• Title/Summary/Keyword: 무선전력 전송

Search Result 1,150, Processing Time 0.022 seconds

The Optimization and Numerical Analysis of The Antenna Circuit for Antenna Design With 13.56MHz As Transmitting Wireless Power (무선전력 전송용 13.56MHz의 안테나 설계를 위한 안테나 회로의 최적화 및 수치적 해석)

  • Chung, Sung-In;Lee, Seung-Min;Lee, Hug-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.10
    • /
    • pp.57-62
    • /
    • 2009
  • This study proposes the optimization and numerical analysis of the antenna circuit for antenna design with 13.56 MHz as transmitting wireless power, for calculating the dose radiation exposure to the real time. The 13.56 MHz of the antenna frequency bands is used to the loop antenna which is a induced current for transmitting the power with wireless the reader to the tag. The study compared to the real measurement value as calculating the value of the inductance and capacitance through the numerical analysis for the antenna LC resonance using the theory of the electromagnetic induction method. We tried to search for the resonance point as the voltages of both sides of antenna coil by the scope measures of the peak point, as we tried to be variable the resonance capacitor for the optimization tuning of the antenna circuit and the matching of the antenna port. We convince our research contributes to help the design and application technology of the wireless power transmit system which is received power supply with wireless.

Wireless Power Transmission High-gain High-Efficiency DC-AC Converter Using Harmonic Suppression Filter (고조파 억제 필터를 이용한 무선전력전송 고이득 고효율 DC-AC 변환회로)

  • Hwang, Hyun-Wook;Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.2
    • /
    • pp.72-75
    • /
    • 2012
  • In this paper, high-efficiency DC-AC converter is implemented for the wireless power transmission. The DC-AC converter is implemented by combining the oscillator and power amplifier. Because the conversion efficiency of wireless power transmitter is strongly affected by the efficiency of power amplifier, the high-efficiency power amplifier is implemented by using the Class-E amplifier structure. Also, because the output power of oscillator connected to the input stage of power amplifier is low, high-gain two-stages power amplifier using the drive amplifier is implemented to realize the high-output power DC-AC converter. The dual band harmonic suppression filter is implemented to suppress 2nd, 3rd harmonics of 13.56 MHz. The output power and conversion efficiency of DC-AC converter are 40 dBm and 80.2 % at the operation frequency of 13.56 MHz.

Multi-Mode Wireless Power Transfer System with Dual Loop Structure (이중루프 구조를 갖는 다중모드 무선전력전송 시스템)

  • Han, Minseok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.578-583
    • /
    • 2016
  • In this paper, we propose a multi-mode wireless power transfer (WPT) system with a dual loop structure. The proposed multi-mode WPT system consist of outer loop module which can operate at two different frequency bands including 6.78 MHz magnetic resonance WPT mode and 13.56 MHz near field communication (NFC) mode and inner loop module connected with outer loop which can operate at two different frequency bands including WPC mode and PMA mode based on inductive coupling standards. In order to be able to embed this system into smartphone battery back cover, the electrical designs are optimized and then the size was fixed $45{\times}90{\times}0.35mm3$ (including ferrite sheet) which is the same commercial smartphone. The proposed multi-mode WPT module can cover WPC and PMA mode based on inductive coupling. Moreover, it has more than 20 dB return loss characteristics at two different frequency bands including 6.78 MHz and 13.56 MHz, and shows more than 70 % transfer efficiency between resonant coils at 6.78 MHz in magnetic resonant charging environment.

Analysis and Design of Planar Textile Resonator for Wearable Magnetic Resonance-Wireless Power Transfer (의복용 자기공진형 무선전력전송 시스템을 위한 평면형 직물공진기의 설계 및 연구)

  • Kang, Seok Hyon;Jung, Chang Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.119-126
    • /
    • 2016
  • In this paper, we proposed the planar textile resonator for constructing wearable MR-WPT system and analyzed the characteristic of textile substrates used in resonators. The planar textile resonators were designed to resonate at 1-10 MHz. The loop and coil were fabricated planar structure on textile substrate using conductive materials. Polyester fiber and cotton widely used in real life were chosen as textile resonators for wearable applications and copper tape and silver paste were used for fabricating planar loop and coil on textile substrate. For comparison analysis on transfer efficiency according to the types of textile, transmitter and receiver parts were symmetric. According to the result, for the highest transfer efficiency of wearable WPT system, the planar resonators have specifications of relative thick textile substrate with low permittivity and low surface resistance of conductive pattern. The performed experiments show that the planar textile resonator is possible to be used for resonator in wearable MR-WPT system.

Resonant Type Wireless Power Transfer Using an Optimized Antenna at 1m Distance (1m 거리에서 최적화된 안테나를 통한 공진방식 무선전력전송)

  • Kim, Young Hyun;Ryu, Daun;Park, Daekil;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.246-251
    • /
    • 2016
  • This paper has optimized WPT (wireless power transfer) antenna, and compared EM (electromagnetic) simulation result with measurement for the magnetic resonant type standard of A4WP (alliance for wireless power) using 6.78MHz frequency and 1m distance. Power transmission distance is affected by various factors such as system shape, antenna size, and resonator coil pitch etc, which were confirmed by the EM simulation. By simulation an optimized WPT antenna was designed for a fixed distance, and the transmission loss ${\mid}S_{21}{\mid}$ has been calculated with changing distance. Measurement was carried for the fabricated antenna, and the measured transmission loss is 1.5dB with 70% efficiency at maximum 1.3m distance compared to the simulated loss of 1.6dB with 69% efficiency

Design and Implementation of Wireless Asynchronous UWB System for low-rate low power PAN applications (저속도 저전력 PAN 응용을 위한 무선 비동기식 UWB 시스템 설계 및 구현)

  • Choi, Sung-Soo;Koo, In-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2021-2026
    • /
    • 2007
  • In the parer, we design a non-coherent UWB system by adopting the architecture of a simplified asynchronous transmission and the edge-triggered pulse transmission, which makes e system performance independent of the share of the transmitted waveform, robust to multipath channels. The designed non-coherent UWB transceiver architecture has an advantage of the simple realization since any mixer, high-speed correlator, and high-sampling A/D converter are not necessary at the cost of performance degradation of about 3dB. Further, the designed non-coherent UWB transceiver is actually implemented with the wireless CANVAS prototype testbed in short range indoor application environments such as a lecture room. The implemented prototype testbed is proven to offer the data rate of 115kbps on the conditions of Peer-to-Peer(P-to-P) in the indoor channel within the range of about 10m.

A Load Balancing Control Method Verification Test For Light weigh electric railway Using Wireless Power Transfer System (무선전력전송시스템을 적용한 경량전철의 부하균등제어방법 실증 시험)

  • Kim, Chan-in;Lee, Chan-Gyo;O, Yeong-Seok;Yoo, Hyo-Yol;Cho, Jung-Goo
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.156-157
    • /
    • 2019
  • 경량전철과 같은 대용량 전력 시스템에 무선전력전송 기술을 적용할 때 전력변환장치의 병렬 운전은 필수적이다. 병렬 연결된 전력변환장치의 경우 출력이 공통으로 연결되어 전력을 공급하게 되는데, 이 때 집전 컨버터의 부하균등제어는 각각의 집전 컨버터의 부하 불균형을 막아줌으로써 집전 컨버터의 수명과 효율이 감소하는 것을 막아준다. 본 논문에서는 부하균등제어방법을 적용한 무선 경량전철 시스템을 통해 기존에 제안된 제어기법을 적용하여 검증하였다. 실증시험의 경우 경산에 위치한 한국철도기술연구원 경량전철시험선의 시험용 경량전철을 두 개의 역사를 반복하여 셔틀 운행하여 최대 400kW의 전력을 두 개의 집전 장치가 전력을 균등하게 공급하는 것을 확인 및 분석하여 논문의 타당성을 검증하였다.

  • PDF