• Title/Summary/Keyword: 무량판

Search Result 68, Processing Time 0.022 seconds

Punching Shear Strength of CFT Column to RC Flat Plate Connections Reinforced with Shearhead (전단머리 보강 CFT기둥-RC 무량판 접합부의 펀칭전단강도)

  • Kim, Jin-Won;Lee, Cheol-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.423-433
    • /
    • 2012
  • This paper summarizes full-scale gravity-load test results on CFT column-to-RC flat plate connections reinforced with shearhead. CFT construction has many structural and constructional advantages over conventional steel and RC column construction and is gaining wide acceptance. Meanwhile the use of RC flat plate system in the basement and residential floors of tall buildings is often mandatory to reduce story height and enable rapid construction in domestic practice. Combining CFT column and flat plate floor is expected to result in further rapid construction. However, the issues related to connecting CFT column to RC flat plate have not been fully addressed yet. Several promising connecting schemes by using steel shearhead were proposed and tested in this study. Test results showed that the proposed connection can exhibit the punching shear strength higher than RC flat plate counterparts. An empirical formula that can reasonably predicts the punching shear strength of the proposed connection was also proposed.

Punching Shear Strength and Behavior of CFT Column to RC Flat Plate connections (CFT기둥-RC 무량판 접합부의 펀칭전단강도 및 거동)

  • Lee, Cheol Ho;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.491-502
    • /
    • 2006
  • This paper summarizes full-scale test results on CFT column-to- flat plate connections has gained wide acceptance subjected to gravity loading. CFT construction has gained wide acceptance in a relatively short time in domestic building construction practice due to its various structural and construction advantages. However, efficient details for CFT column to flat plate connections have not been proposed yet. Based on the strategies that maximize economical field construction, several connecting schemes were proposed and tested. Test results showed strength and connection stiffness exceeding those of R/C flat p late counterparts. A semi-analytical procedure is presented to model the behavior of CFT column-to-flat plate connections. The five parameters to model elastic to post-punching catenary action range are calibrated based on the limited test data of t to progressive collapse prevention design is also illustrated.

Verification Of Lateral Stiffness Evaluation of Tall Building With Flat Plate System (계측을 통한 초고층 무량판 구조물의 횡강성 산정식의 유효성 검증)

  • Park, Je-Woo;Kim, Hong-Jin;Lee, Jee-Hoon;Jang, Young-Ju;Jo, Ji-Seong;Kim, Hyun-Bae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.331-334
    • /
    • 2009
  • 본 논문에서는 계측을 통한 초고층 무량판 구조물의 횡강성 산정식의 유효성을 검정하였다. 초고층 건축물의 풍진동은 건축물의 사용성 평가에 중요한 구조설계요인 중 하나이다. 신뢰성 있는 풍하중 및 풍진동을 얻기위해서는 정확한 고유주기의 예측이 중요하며 고유주기 예측에 오차가 있을 경우 하중을 지나치게 과대평가하게 되는 문제를 유발하게 된다. 본 논문에서는 최근들어 국내에서 본격적으로 증가하고 있는 초고층 무량판 구조시스템의 건축물에 대한 해석 모델링과 실측을 통하여 추정된 무량판 초고층 건물의 동적특성을 바탕으로 구조해석과 동적거동의 계측을 통하여 내풍설계를 위한 횡강성 및 주기를 산정하는 연구를 수행하였다.

  • PDF

Lateral Resisting Behavior of Reinforced Concrete Shear Wall and Flat Plate Column (철근콘크리트 전단벽과 무량판 기둥의 횡저항 거동)

  • Kim, Tae-Wan;Min, Chan-Gi
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.14-17
    • /
    • 2010
  • 본 논문에서는 국내에서 주상복합건물에 주로 건설되는 철근콘크리트 전단벽과 무량판 골조 기둥 시스템의 횡저항 거동을 조사, 분석하였다. 이 시스템의 내진설계 시 건물골조시스템을 적용하게 되는데 전단벽 설계는 큰 어려움이 없으나 골조의 경우 변형의 적합성을 고려해야 할 경우에 상세하고 명확한 지침이 마련되어 있지 않아 그 적용이 쉽지 않다. 이를 해결하기 위하여 예제 건물을 선정하여 기준에 따라 설계한 후 비선형정적 해석을 수행하여 철근콘크리트 전단벽과 무량판 골조 기둥의 비선형 거동을 조사하였다. 그 결과 무량판 골조 기둥의 거동은 전단벽에 종속되었고 변형의 적합성을 고려하기 위해 골조의 모멘트를 증폭하더라도 기둥의 단면 변화가 크지 않으므로 실무적으로 큰 어려움이 없는 것으로 나타났다. 다만 강도뿐만 아니라 변형 능력에 대해서도 추가적인 연구가 필요하다.

  • PDF

Stiffness Prediction of Flatplate System According to Column Section Shape (기둥단면 형상에 따른 무량판 구조시스템 강성예측)

  • Lee, Do-Bum;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.194-202
    • /
    • 2006
  • In the present study, stiffness prediction methodologies for flat-plate structures were evaluated in comparison with the experimental results on the full-scale slab-column connections of flat-plate structures. The methodologies are as follows: the methodology proposed by Jacob S. Grossman and the methodology proposed by Choi & Song. The former does not predict the stiffness change of the slab-column connection due to the change in the column section shape and the latter overestimates the stiffness when edge length of the column section in the loading direction is long. In the present study, the equation to calculate the effective width of slabs was modified to reflect the effect of the change in the column section shape.

An Experimental Study for Development of Details and Design Method of CFT Column-to-RC Flat Plate Connections (콘크리트 충전각형강관 (CFT)기둥과 철근콘크리트 무량판 접합부 상세 및 설계법 개발을 위한 실험연구)

  • Lee, Cheol Ho;Kim, Jin Won;Oh, Jeong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.481-490
    • /
    • 2005
  • This paper summarizes the full-scale test results on the CFT column-to-flat plate connections subjected to gravity loading. CFT construction has gained wide acceptance in a relatively short time in domestic building construction practice due to its various structural and construction advantages. Constructing an underground parking floor as a flat plate system is often regarded as essential for both cost savings and rapid construction. Efficient details for CFT-column-to-flat-plate connections have not been proposed yet, however, and their development is urgently needed. Based on some strategies that maximize economical field construction, several connecting schemes were proposed and tested based on a full-scale model. The test results showed that the proposed connection details can exhibit punching shear strength and connection stiffness comparable to or greater than those of their R/C flat plate counterpart.

Modeling Method of Slabs in RC Flat-Plate Structures Under Lateral loading (횡하중을 받는 RC 무량판 구조의 슬래브 모델링 기법)

  • 최정욱;송진규;이수곤;김진상
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.615-622
    • /
    • 2002
  • To reasonably predict the behaviors for RC flat-plate structures, analysis model considering the flexural stiffness of slabs is required. FEMA 273 and ACI 318-99 refer to theoretical analysis models of two-way slab systems under lateral loading but the actual application method is not suggested. In this study, the modeling and application methods of the flat-plates using effective beam concept are suggested. The results of this study are as follows. 1) The effective beam width model suggested in this study is very useful to model flat-Plate structures subjected to seismic loading for three dimensional analysis 2) The result of analysis for idealized flat-plate example using the effective beam widths considering the effect of the slab crack is shown upper value for displacements. Whereas the model considering effective beam width coefficients only is shown upper value for unbalanced moments

Evaluation for Progressive Collapse Resistance of a RC Flat Plate System Using the Static and Dynamic Analysis (정적 및 동적 해석을 통한 철근콘크리트 무량판 구조의 연쇄 붕괴 저항 성능 평가)

  • Lee, Seon-Woong;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.245-252
    • /
    • 2011
  • Currently, the design guidelines for the prevention of progressive collapse are not available in Korea due to the lack of study efforts in progressive collapse resistance evaluation of RC flat plate system. Therefore, in this study, three types of analysis were conducted to evaluate the progressive collapse resistance of a RC flat plate system. A linear static analysis was carried out by comparing the demand-capacity ratio (DCR) differences of the systems using the alternate load path method, which is the guideline of GSA. A dynamic behavior was investigated by checking the vertical deflection after removal of the column using the linear dynamic analysis. Lastly, a maximum load factor was investigated using the nonlinear static analysis. The finite element (FE) analyses were conducted using various parameters to analyze the results obtained using effective beam width (EB) model and plate element FEM (PF) model. This study results showed that the strength contributions of the slab in the EB models are underestimated compared to those obtained from the PF models. Therefore, a detailed FE analysis considering the slab element is required to thoroughly estimate the progressive collapse resisting capacity of flat plate system. The scenario of the corner column (CC) removal is the most dangerous conditions where as the scenario of the inner column (IC) removal is the least dangerous conditions based on the consideration of various parameters. The analysis results will allow more realistic evaluations of progressive collapse resistance of RC flat plate system.

Development and Application of Lattice Shear Reinforcement for Flat Plate Slab-column Connection (래티스를 이용한 철근콘크리트 무량판 구조의 슬래브-기둥 접합부 전단보강 공법 개발)

  • Kang, Su-Min;Park, Sung-Woo;Bang, Joong-Seok;Lee, Do-Bum;Kwon, Chul-Hwan;Park, Hong-Gun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.5
    • /
    • pp.482-490
    • /
    • 2013
  • Although the flat plate system is an efficient structural type due to the simplicity of its construction, the low story height, and the various plan design, the slab-column connections are vulnerable to punching shear failure from gravity load and eccentric shear failure from lateral load. To prevent the structure collapse, various construction methods of slab-column connection reinforcement are developed but none of these satisfies all of structural performance, economics, and constructability. This paper presents the reinforcement of slab-column connection with lattice bars. The structural performance is confirmed with the interior slab-column connection tests subjected to cyclic loading, and the economic feasibility is demonstrated from the structural design under the same condition with lattice bars, stud rails, and stirrups.

Lateral Resisting Capacity for CFT Column to RC Flat Plate Slab Connections (CFT 기둥 - RC 무량판 슬래브 접합부의 횡저항 성능)

  • Song, Jin-Kyu;Song, Ho-Beom;Oh, Sang-Won;Lee, Cheol-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.65-68
    • /
    • 2008
  • This paper verified the lateral resisting capacity of CFT column-RC flat plate connection in comparison with general RC column-flat plate connection and detected moment capacity and ductility capacity of connection according to lateral force-displacement ratio. We made and tested specimens which have different variables respectively and as a result derive a following conclusion. In CFT specimen a critical section was extended and initial stiffness and moment increased 35%, 25$^{\sim}$35% respectively in comparison to general RC column specimen. In all specimens generally shear governed behaviors and in CFT specimen complemented with seismic band, flexure behavior region of slab was extended and also ductility ratio and energy absorptance increased.

  • PDF