• Title/Summary/Keyword: 몸체

Search Result 375, Processing Time 0.024 seconds

Delay Characteristics and Sound Quality of Space Based Digital Waveguide Model (공간 기준 디지털 도파관 모델의 지연 특성과 합성음의 음질)

  • 강명수;김규년
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.680-686
    • /
    • 2003
  • Digital waveguide model is a general method that is used in physical modeling of musical instruments. Wave motion is analyzed by time or by space in digital waveguide model. Because sampling is made via time, it is general that musical instrument model is described by wave motion of time. In this paper, we synthesized the musical instrument sound by adding instrument body model to the spatial based string model. In this way, we could improve sound quality and process musical instrument model's tone control variables effectively. We explained about delay error that happens in string and body in space based sampling and showed method to process fractional delay using FD (Fractional Delay)filter. Finally, we explained the relation between tone quality and number of delays. And we also compared the result with time base digital waveguide model.

Design of MediaFLO/GPS/Bluetooth Chassis Mode Antenna for Mobile Handset with Metallic Body (금속 몸체를 갖는 휴대단말기를 위한 MediaFLO/GPS/Bluethooth용 새시 모드 안테나의 설계)

  • Jung, Kang-Jae;Lee, Byung-Je
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.829-834
    • /
    • 2009
  • In this paper, a HediaFLO/GPS/Bluetooth antenna is designed for mobile handset with metallic chassis. It is consisted of two metal plates with 7.6 mm gap, a connection plate and source between two plates. It can be analyzed as U-slot antenna of $0.5\;{\lambda}$, array of shorted patches each application bands. Simulated and measured performance of the proposed antenna show that it has enough possibility to reuse metallic chassis itself as radiator without any additional space for antenna.

The Radiation Efficiency Change according to the Slot Antenna Location (슬롯 안테나의 위치에 따른 방사 효율 연구)

  • Jeon, Ji-Hwan;Liu, Yang;Lee, Jae-Seok;Kim, Hyeong-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.381-386
    • /
    • 2014
  • In this paper, the effect of slot antenna's location in the radiation performance and impedance bandwidth was analyzed. The proposed antenna was designed to operate at Wi-Fi band(2.4~2.5 GHz) when the slot antenna is located at the center of the ground plane, the proposed antenna has a bandwidth of 340 MHz(2.24~2.58 GHz) under voltage standing wave ratio of = 2 and achieves average realized efficiency of 69 % over Wi-Fi bands.

Interactive Motion Retargeting for Humanoid in Constrained Environment (제한된 환경 속에서 휴머노이드를 위한 인터랙티브 모션 리타겟팅)

  • Nam, Ha Jong;Lee, Ji Hye;Choi, Myung Geol
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • In this paper, we introduce a technique to retarget human motion data to the humanoid body in a constrained environment. We assume that the given motion data includes detailed interactions such as holding the object by hand or avoiding obstacles. In addition, we assume that the humanoid joint structure is different from the human joint structure, and the shape of the surrounding environment is different from that at the time of the original motion. Under such a condition, it is also difficult to preserve the context of the interaction shown in the original motion data, if the retargeting technique that considers only the change of the body shape. Our approach is to separate the problem into two smaller problems and solve them independently. One is to retarget motion data to a new skeleton, and the other is to preserve the context of interactions. We first retarget the given human motion data to the target humanoid body ignoring the interaction with the environment. Then, we precisely deform the shape of the environmental model to match with the humanoid motion so that the original interaction is reproduced. Finally, we set spatial constraints between the humanoid body and the environmental model, and restore the environmental model to the original shape. To demonstrate the usefulness of our method, we conducted an experiment by using the Boston Dynamic's Atlas robot. We expected that out method can help the humanoid motion tracking problem in the future.

Skeletal maturation associated with the fourth cervical vertebra and menarcheal timing (제4경추의 형태와 초경을 통한 성숙지표에 관한 연구)

  • Lee, Kyu-Hong;Hwang, Yong-In;Kim, Yoon-Ji;Baek, Seung-Hak;Cha, Kyung-Suk;Park, Yang-Ho
    • The korean journal of orthodontics
    • /
    • v.38 no.1
    • /
    • pp.52-59
    • /
    • 2008
  • Objective: This study analyzed the morphologic changes of the fourth cervical vertebra body to determine the skeletal age of orthodontic patients during growth. Methods: Eighty-one female patients aged from 11 to 14 who had cephalograms taken on the same day were examined. The subjects were divided into three groups depending on the depth of the concavity of the lower border of the fourth cervical vertebra (Group A: less than 1.05 mm, Group B: 1.05 - 2.07 mm, Group C: greater than 2.07 mm). Menarcheal timing, SMI stage, length, width and ratio of length and width of the fourth cervical vertebra body were analyzed and the following results were obtained. Results: The average SMI stage of group A, B and C were $5.67{\pm}2.57,\;8.73{\pm}2.41,\;and\;10.00{\pm}1.47$, respectively. Length, width, ratio of length and width, and SMI stage were greater in group B than group A and in group C than group B. Mean menarcheal timing was $11.64{\pm}0.92$ years. Concavity depth, length, width, ratio of length and width showed a significant positive correlation with SMI stage, especially with the concavity depth. Conclusion: The results of this study propose a simple method for determining the timing of orthopedic treatment by measuring the concavity depth of the fourth cervical vertebra on the cephalogram.

Design Technique for Track Shoe Body of Military Vehicles (군용 궤도류 궤도몸체 설계 방법론 연구)

  • Shin, Cheolho;Oh, Yeong Min;Park, Ji Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.77-82
    • /
    • 2018
  • Track shoes improve the off-road driving ability of tanks. The strength of the track shoe body directly affects the driving ability of tanks, self-propelled artillery, and armored vehicles. In this study, the design technique for track shoe body was investigated. To select the optimal design of track shoe body, three track shoe body models were suggested and compared. Tensile strength was calculated using computer-aided engineering (CAE) analysis. Compressive tests were conducted using the original tank sprocket because sprocket compression is critical to the lifespan of the track shoe body. As a result, one track shoe body design was selected and the process of track shoe body design was described.

Interference-free tool path generation for 5-axis NC machining with ball-endmill (5축 볼 엔드밀 가공에서의 간섭이 배제된 공구경로 산출)

  • 강대호;서석환;이정재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.95-100
    • /
    • 1993
  • 본 연구에서는 볼 엔드밀을 사용한 5축 가공에서 공구 간섭회피를 위한 효율적인 알고리즘과 가공 가능한 많은 자세들 중에서 공구 절삭부위와 이전자세를 고려한 공구 자세설정 알고리즘을 개발 하였다. 공구 간섭검사는 공구 밑면 간섭과 몸체 간섭으로 나누어 순차적으로 수행하고, 공구 몸채 간섭이 없는 공구 자세를 설정한다. 공구 몸체 간섭검사는 곡면의 다각형 모델과 공구 축과의 관계를 사용하여 행한다. 간섭이 발생하였을 경우 간섭회피 및 자세조정 영역으로 설정하고 유효한 공구자세의 범위를 정한 후, 이 범위 내에서 공구 절삭 부위 및 이전 자세를 고려한 효율적 공구자세를 사용하여 공구경로를 산출하였으며, 시뮬레이터를 통해 그 유효성을 검증하였다.

  • PDF

Optimum Design of the Cylindrical Shell under External Pressuer Loading (수압을 받는 원통형 쉘의 최적설계)

  • 임오강;이병우;전완수;정현기
    • Computational Structural Engineering
    • /
    • v.8 no.1
    • /
    • pp.85-94
    • /
    • 1995
  • The optimum design of the cylindrical shell under external pressure loading is considered. The design variable is a skin thickness of the unstiffened parallel middle body shell. Overall buckling strength and direct stress and displacements constraints are considered in the design problem The optimum design is achieved with one of the standard nonlinear constrained optimization technique. A method for calculating the sensitivity coefficients is developed using the direct differentiation.

  • PDF

A MEMS Z-axis Microaccelerometer for Vertical Motion Sensing of Mobile Robot (이동 로봇의 수직 운동 감지를 위한 초소형 MEMS Z축 가속도계)

  • Lee, Sang-Min;Cho, Dong-Il Dan
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.249-254
    • /
    • 2007
  • 본 논문에서는 웨이퍼 레벨 밀봉 실장된 수직 운동 가속도 신호를 감지할 수 있는 초소형 Z축 가속도 센싱 엘리먼트를 제작하였다. 초소형 Z축 가속도 센싱 엘리먼트는 수직 방향의 정전용량 변화를 필요로 하기 때문에 단일 기판상에 수직 단차의 형성을 가능케 하는 확장된 희생 몸체 미세 가공 기술 (Extended Sacrificial Bulk Micromachining, ESBM) 을 이용하여 제작되었다. 확장된 희생 몸체 미세 가공 기술을 이용하면 정렬오차가 없이 상하부 양쪽에 수직 단차를 갖는 실리콘 구조물의 제작이 가능하다. 또한, MEMS 센싱 엘리먼트의 부유된 실리콘 구조물을 보호하기 위하여 웨이퍼 레벨 밀봉 실장 기술이 적용하여 고신뢰성, 고수율, 고성능의 Z축 가속도 센서를 제작하였다. 신호 처리 회로와 가속도 센서를 결합하여 Z축 가속도 센싱 시스템을 제작하였고 운동가속도 범위 10 g 이상, 정지 드리프트 17.3 mg 그리고 대역폭 60 Hz 이상의 성능을 나타내었다.

  • PDF

A Geometric Analysis of Frame Photography Using a Body-Fixed Image Sensor for Aerial Observation (공중관측용 몸체고정형 영상센서의 프레임촬영에 대한 기하학적 분석 방법)

  • Lee, Youngki;Jeong, Jinhong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.590-598
    • /
    • 2019
  • Aerial photographs taken by an image sensor fixed on a flight body, e.g. without a gimbal, are generally distorted according to its attitude, altitude and angle of view in flight. This can result in a significant difficulty of analyzing geometric information which should be integrated for numerous still frames. In this study, a simulation method of observation performance that uses geometric relationships between navigation data and image data is suggested, and this method is shown to be very useful for easily examining the integrated information such as the total range of photography, the time of target acquisition, etc.