• Title/Summary/Keyword: 몬테칼로 모의

Search Result 57, Processing Time 0.021 seconds

Characterization of the Neutron for Linear Accelerator Shielding Wall using a Monte Carlo Simulation (몬테칼로시뮬레이션을 이용한 선형가속기 차폐벽에 대한 중성자 특성 평가)

  • Lee, Dong Yeon;Park, Eun Tae;Kim, Jung Hoon
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.89-97
    • /
    • 2016
  • As previous studies to proceed with the evaluation of the radioactive at linear accelerator's shielding concrete wall. And the shielding wall was evaluated the characteristics for the incoming neutron. As a result, the shielding wall is the average amount of incoming neutrons 10 MV 4.63E-7%, 15 MV 9.69E-6%, showed the occurrence of 20 MV 2.18E-5%. The proportion of thermal neutrons of which are found to be approximately 18-33%. The neutron generation rate can be seen as a slight numerical order. However, in consideration of the linear accelerator operating time we can not ignore the effects of neutrons. Accordingly radioactive problem of the radiation shield wall of the treatment room will be this should be considered.

Regional Frequency Analysis for Rainfall using L-Moment (L-모멘트법에 의한 강우의 지역빈도분석)

  • Koh, Deuk-Koo;Choo, Tai-Ho;Maeng, Seung-Jin;Trivedi, Chanda
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.3
    • /
    • pp.252-263
    • /
    • 2008
  • This study was conducted to derive the optimal regionalization of the precipitation data which can be classified on the basis of climatologically and geographically homogeneous regions all over the regions except Cheju and Ulreung islands in Korea. A total of 65 rain gauges were used to regional analysis of precipitation. Annual maximum series for the consecutive durations of 1, 3, 6, 12, 24, 36, 48 and 72hr were used for various statistical analyses. K-means clustering mettled is used to identify homogeneous regions all over the regions. Five homogeneous regions for the precipitation were classified by the K-means clustering. Using the L-moment ratios and Kolmogorov-Smirnov test, the underlying regional probability distribution was identified to be the generalized extreme value (GEV) distribution among applied distributions. The regional and at-site parameters of the generalized extreme value distribution were estimated by the linear combination of the probability weighted moments, L-moment. The regional and at-site analysis for the design rainfall were tested by Monte Carlo simulation. Relative root-mean-square error (RRMSE), relative bias (RBIAS) and relative reduction (RR) in RRMSE were computed and compared with those resulting from at-site Monte Carlo simulation. All show that the regional analysis procedure can substantially reduce the RRMSE, RBIAS and RR in RRMSE in the prediction of design rainfall. Consequently, optimal design rainfalls following the regions and consecutive durations were derived by the regional frequency analysis.

Assessment of Effective Doses in the Radiation Field of Contaminated Ground Surface by Monte Carlo Simulation (몬테칼로 시뮬레이션에 의한 지표면 오염 방사선장에서의 유효선량 평가)

  • Chang, Jai-Kwon;Lee, Jai-Ki;Chang, Si-Young
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.205-213
    • /
    • 1999
  • Effective dose conversion coefficients from unit activity radionuclides contaminated on the ground surface were calculated by using MCNP4A rode and male/female anthropomorphic phantoms. The simulation calculations were made for 19 energy points in the range of 40 keV to 10 MeV. The effective doses E resulting from unit source intensity for different energy were compared to the effective dose equivalent $H_E$ of previous studies. Our E values are lower by 30% at low energy than the $H_E$ values given in the Federal Guidance Report of USEPA. The effective dose response functions derived by polynomial fitting of the energy-effective dose relationship are as follows: $f({\varepsilon})[fSv\;m^2]=\;0.0634\;+\;0.727{\varepsilon}-0.0520{\varepsilon}^2+0.00247{\varepsilon}^3,\;where\;{\varepsilon}$ is the gamma energy in MeV. Using the response function and the radionuclide decay data given in ICRP 38, the effective dose conversion coefficients for unit activity contamination on the ground surface were calculated with addition of the skin dose contribution of beta particles determined by use of the DOSEFACTOR code. The conversion coefficients for 90 important radionuclides were evaluated and tabulated. Comparison with the existing data showed that a significant underestimates could be resulted when the old conversion coefficients were used, especially for the nuclides emitting low energy photons or high energy beta particles.

  • PDF

Bayesian ordinal probit semiparametric regression models: KNHANES 2016 data analysis of the relationship between smoking behavior and coffee intake (베이지안 순서형 프로빗 준모수 회귀 모형 : 국민건강영양조사 2016 자료를 통한 흡연양태와 커피섭취 간의 관계 분석)

  • Lee, Dasom;Lee, Eunji;Jo, Seogil;Choi, Taeryeon
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.1
    • /
    • pp.25-46
    • /
    • 2020
  • This paper presents ordinal probit semiparametric regression models using Bayesian Spectral Analysis Regression (BSAR) method. Ordinal probit regression is a way of modeling ordinal responses - usually more than two categories - by connecting the probability of falling into each category explained by a combination of available covariates using a probit (an inverse function of normal cumulative distribution function) link. The Bayesian probit model facilitates posterior sampling by bringing a latent variable following normal distribution, therefore, the responses are categorized by the cut-off points according to values of latent variables. In this paper, we extend the latent variable approach to a semiparametric model for the Bayesian ordinal probit regression with nonparametric functions using a spectral representation of Gaussian processes based BSAR method. The latent variable is decomposed into a parametric component and a nonparametric component with or without a shape constraint for modeling ordinal responses and predicting outcomes more flexibly. We illustrate the proposed methods with simulation studies in comparison with existing methods and real data analysis applied to a Korean National Health and Nutrition Examination Survey (KNHANES) 2016 for investigating nonparametric relationship between smoking behavior and coffee intake.

Statistical Inference for Process Capability Indices and 6 Sigma Qualify Levels (공정능력지수들과 6 시그마 품질수준에 대한 통계적 추론)

  • Cho, Joong-Jae;Sim, Kyu-Young;Park, Byoung-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.3
    • /
    • pp.451-464
    • /
    • 2008
  • Six sigma is the rating that signifies "best in clas", with only 3.4 defects per million units or operations. Higher sigma quality level is generally perceived by customers as improved performance by assigning a correspondingly higher satisfaction score. The process capability indices and the sigma level $Z_{st}$ have been widely used in six sigma industries to assess process performance. Most evaluations on process capability indices focus on point estimates, which may result in unreliable assessments of process performance. In this paper, we consider statistical inference for process capability indices $C_p$, $C_{pk}$ and $C_{pm}$. Also, we study better testing procedure on assessing sigma level $Z_{st}$ and capability index $C_{pm}$, for practitioners to use in determining whether a given process is capable. The proposed method is easy to use and the decision making is more reliable. Whether a process is clearly normal or nonnormal, our bootstrap testing procedure could be applied effectively without the complexity of calculation. A numerical result based on our proposed method is illustrated.

Test of Hypothesis in Assessing Process Capability Index Cpmk (공정능력지수 Cpmk를 평가함에서의 바람직한 가설검정)

  • Cho, Joong-Jae;Yu, Hye-Kyung;Hana, Jung-Su
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.3
    • /
    • pp.459-471
    • /
    • 2010
  • Higher quality level is generally perceived by customers as improved performance by assigning a correspondingly higher satisfaction score. Usually, the quality level is measured by process capability indices. The index is used to determine whether a production process is capable of producing items within a specified tolerance. The third generation index $C_{pmk}$ is more powerful than two useful indices $C_p$ and $C_{pk}$. which have been widely used in six sigma industries to assess process performance. Most evaluations on process capability indices focus on point estimates, which may result in unreliable assessments of process performance. In this paper, we consider better testing procedure on assessing process capability index $C_{pmk}$ for practitioners to use in determining whether a given process is capable. It is easy to use the proposed method for assessing process capability index $C_{pmk}$. Whether a process is clearly normal or nonnormal, our bootstrap testing procedure could be applied effectively without the complexity of calculation. A numerical result based on our proposed method is illustrated.

Preliminary Study for Imaging of Therapy Region from Boron Neutron Capture Therapy (붕소 중성자 포획 치료에서 치료 영역 영상화를 위한 예비 연구)

  • Jung, Joo-Young;Yoon, Do-Kun;Han, Seong-Min;Jang, HongSeok;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.151-156
    • /
    • 2014
  • The purpose of this study was to confirm the feasibility of imaging of therapy region from the boron neutron capture therapy (BNCT) using the measurement of the prompt gamma ray depending on the neutron flux. Through the Monte Carlo simulation, we performed the verification of physical phenomena from the BNCT; (1) the effects of neutron according to the existence of boron uptake region (BUR), (2) the internal and external measurement of prompt gamma ray dose, (3) the energy spectrum by the prompt gamma ray. All simulation results were deducted using the Monte Carlo n-particle extended (MCNPX, Ver.2.6.0, Los Alamos National Laboratory, Los Alamos, NM, USA) simulation tool. The virtual water phantom, thermal neutron source, and BURs were simulated using the MCNPX. The energy of the thermal neutron source was defined as below 1 eV with 2,000,000 n/sec flux. The prompt gamma ray was measured with the direction of beam path in the water phantom. The detector material was defined as the lutetium-yttrium oxyorthosilicate (Lu0,6Y1,4Si0,5:Ce; LYSO) scintillator with lead shielding for the collimation. The BUR's height was 5 cm with the 28 frames (bin: 0.18 cm) for the dose calculation. The neutron flux was decreased dramatically at the shallow region of BUR. In addition, the dose of prompt gamma ray was confirmed at the 9 cm depth from water surface, which is the start point of the BUR. In the energy spectrum, the prompt gamma ray peak of the 478 keV was appeared clearly with full width at half maximum (FWHM) of the 41 keV (energy resolution: 8.5%). In conclusion, the therapy region can be monitored by the gamma camera and single photon emission computed tomography (SPECT) using the measurement of the prompt gamma ray during the BNCT.