• Title/Summary/Keyword: 목표오차

Search Result 435, Processing Time 0.031 seconds

Compensation of Geo-Pointing Error due to Information Transport Delay for Electro-Optical Tracking System (전자광학 추적장비의 정보 전송지연에 따른 좌표지향 오차보상)

  • Yim, Jong-Bin;Moon, Seong-Man;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.5
    • /
    • pp.1-7
    • /
    • 2011
  • EOTS(Electro-Optical Tracking System) provides stabilized images while tracking a moving target. The key of geo-pointing is the function that fixes EOTS's sight to a specific position(geo-point) throughout aircraft maneuvers. In this paper, a major error source for the geo-pointing is identified as the transport delay of navigation information, and an augmented Kalman filter is designed to estimate the present attitude of aircraft using delayed navigation information. Simulation results including the presented scheme shows that the error due to the information transport delay reduces under half.

Evaluation of Accuracy on Hitchcoke CT/angio localization system using QA head phantom (QA용 두부 팬톰을 이용한 Hitchcoke CT 및 혈관조영 정위적 시스템에 대한 정확도 평가)

  • 김성현;서태석;윤세철;손병철;김문찬;신경섭
    • Progress in Medical Physics
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • In order to provide complementary image data, CT(computed tomography), MR(magnetic resonance) and angiography have been used in the field of Stereotactic Radiosurgery(SRS) and neurosurgery. The aim of this work is to develop 3-D stereotactic localization system in order to determine the precise shape, size and location of the lesion in the brain in the field of Stereotactic Radiosurgery(SRS) and neurosurgery using multi-image modality and multi purpose QA phantom. In order to obtain accurate position of a target, Hitchcoke stereotactic frame and CT/angiography localizers were rigidly attached to the phantom with nine targets dispersed in 3-D space. The algorithms to obtain a 3-D stereotactic coordinates of the target have been developed using the images of the geometrical phantom which were taken by CT/angiography. Positions of targets computed by our algorithms were compared to the absolute position assigned in the phantom. Outlines of targets on each CT image were superimposed each other on angiography images. A spatial mean distance errors were 1.02${\pm}$0.17mm for CT with a 512${\times}$512 matrix and 2mm slice thickness, 0.41${\pm}$0.05mm for angiogra- phy localization. The resulting accuracy in the target localization suggests that the developed system has enough Qualification for Stereotactic Radiosurgery (SRS).

  • PDF

A Study on the Performance Improvement of Fuzzy Controller Using Genetic Algorithm and Evolution Programming (유전알고리즘과 진화프로그램을 이용한 퍼지제어기의 성능 향상에 관한 연구)

  • 이상부;임영도
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.58-64
    • /
    • 1997
  • FLC(Fuzzy Logic Controller) is stronger to the disturbance than a classical controller and its overshoot of the intialized value is excellent. In case an unknown process or the mathematical modeling of a complicated system is impossible, a fit control quantity can be acquired by the Fuzzy inference. But FLC can not converge correctly to the desirable value because the FLC's output value by the size of the quantization level of the Fuzzy variable always has a minor error. There are many ways to eliminate the minor error, but I will suggest GA-FLC and EP-FLC Hybrid controller which csombines FLC with GA(Genetic Algorithm) and EP(Evo1ution Programming). In this paper, the output characteristics of this Hybrid controller will be compared and analyzed with those of FLC, it will he showed that this Hybrid controller converge correctly to the desirable value without any error, and !he convergence speed performance of these two kinds of Hyhrid controller also will be compared.

  • PDF

Realization of Intelligence Controller Using Genetic Algorithm.Neural Network.Fuzzy Logic (유전알고리즘.신경회로망.퍼지논리가 결합된 지능제어기의 구현)

  • Lee Sang-Boo;Kim Hyung-Soo
    • Journal of Digital Contents Society
    • /
    • v.2 no.1
    • /
    • pp.51-61
    • /
    • 2001
  • The FLC(Fuzzy Logic Controller) is stronger to the disturbance and has the excellent characteristic to the overshoot of the initialized value than the classical controller, and also can carry out the proper control being out of all relation to the mathematical model and parameter value of the system. But it has the restriction which can't adopt the environment changes of the control system because of generating the fuzzy control rule through an expert's experience and the fixed value of the once determined control rule, and also can't converge correctly to the desired value because of haying the minute error of the controller output value. Now there are many suggested methods to eliminate the minute error, we also suggest the GA-FNNIC(Genetic Algorithm Fuzzy Neural Network Intelligence Controller) combined FLC with NN(Neural Network) and GA(Genetic Algorithm). In this paper, we compare the suggested GA-FNNIC with FLC and analyze the output characteristics, convergence speed, overshoot and rising time. Finally we show that the GA-FNNIC converge correctly to the desirable value without any error.

  • PDF

A Study on Combined DoA Estimation Algorithm using LCMV and Maximum Posterior on Uniform Linear Array Antenna (균일 선형 배열 안테나에서 선형구속최소분산 방법과 사후 추정 확률을 결합한 도래 방향 추정 알고리즘 연구)

  • Lee, Kwan-Hyeong;Park, Sung-Kon;Jeong, Youn-Seo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.3
    • /
    • pp.291-297
    • /
    • 2016
  • In this paper, we are comparative analysis of exit algorithm and proposal algorithm for desired target direction of arrival estimation in correlation signal system. Proposed algorithm in this paper is to decrease target direction of arrival an estimation error probability using bayesian, maximum posterior, and MUSIC algorithm in order to decrease direction of arrival error probability as optimize and use linear constrained minimum variance to update weight value. Through simulation, we were comparative analysis proposed algorithm and exit MUSIC algorithm. In case SNR is 10dB and antenna element arrays are 9 and 12, We show the superior performance of the proposed method relative to the class method to decrease of signal estimation error probability about 11% and 13%, respectively.

Design of 3-Axis Focus Mechanism Using Piezoelectric Actuators for a Small Satellite Camera (소형 위성 카메라의 압전작동기 타입 3-축 포커스 메커니즘 설계)

  • Hong, Dae Gi;Hwang, Jai Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.9-17
    • /
    • 2018
  • For Earth observation, a small satellite camera has relatively weak structural stability compared to medium-sized satellite, resulting in misalignment of optical components due to severe launching and space environments. These alignment errors can deteriorate the optical performance of satellite cameras. In this study, we proposed a 3-axis focus mechanism to compensate misalignment in a small satellite camera. This mechanism consists of three piezo-electric actuators to perform x-axis and y-axis tilt with de-space compensation. Design requirements for the focus mechanism were derived from the design of the Schmidt-Cassegrain target optical system. To compensate the misalignment of the secondary mirror (M2), the focus mechanism was installed just behind the M2 to control the 3-axis movement of M2. In this case, flexure design with Box-Behnken test plan was used to minimize optical degradation due to wave front error. The wave front error was analyzed using ANSYS. The fabricated focus mechanism demonstrated excellent servo performance in experiments with PID servo control.

Array Error Analysis and Correction of Active Array Antenna for AESA Radar (AESA 레이더 능동위상배열 안테나의 배열오차 분석 및 보정)

  • Lee, YuRi;Kim, JongPil;Kang, Yeonduk;Kim, SunJoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.414-423
    • /
    • 2015
  • Array error analysis and correction of active array antenna are described in this paper. Array elements composed of radiator and TR(Transmit & Recive) module have error(magnitude and phase difference among array elements) which affects SLL(Side Lobe Level). Error affectedness level depends on ideal SLL according to antenna aperture weighting, number of array elements and antenna effective aperture. To satisfy required SLL, correction of array elements is necessary; adopted differently per errors, and weighted differently per shapes of antenna and required SLL. Errors of every individual element had been defined, performance of the antenna with or without error correction had been estimated and proved through near field test.

A Study on the Error Estimate for Wegmann's Method applying Low Frequency Pass Filler (저주파필터를 적용한 Wegmann방법의 오차평가에 관한 연구)

  • Song Eun-Jee
    • The KIPS Transactions:PartA
    • /
    • v.12A no.2 s.92
    • /
    • pp.103-108
    • /
    • 2005
  • The purpose of numerical analysis is to design an effective algorithm to realize some mathematical model on computer. In general the approximate value, which is obtained from computer operation, is not the same as the real value that is given by mathematical theory. Therefore the mr estimate measuring how approximate value is near to the real value, is the most significant task to evaluate the efficiency of algorithm. The limit of an error is used for mr estimation at the most case, but the exact mr evaluation could not be expected to get for there is no way to know the real value of the given problem. Wegmann's method has been researched, which is one of the solution to derive the numerical conformal mapping. We proposed an improved method for convergency by applying a low frequency filter to the Wegmann's method. In this paper we investigate error analysis based on some mathematical theory and propose an effective method which makes us able to estimate an error if the real value is not acquired. This kind of proposed method is also proved by numerical experiment.

A Case Study on Teaching the Sum of the Interior Angles of a Triangle Using Measurement Errors (측정 오차를 활용한 삼각형의 내각의 합 지도 방안 사례 연구)

  • Oh, Youngyoul;Park, Jukyung
    • Communications of Mathematical Education
    • /
    • v.35 no.4
    • /
    • pp.425-444
    • /
    • 2021
  • In this study, under the assumption that the goal pursued in measurement area can be reached through the composition of the measurement activity considering the mathematical process, the method of summing the interior angles of a triangle using the measurement error was applied to the 4th grade class of the elementary school. Results of the study, first, students were able to recognize the possibility of measurement error by learning the sum of the interior angles of a triangle using the measurement error. Second, the discussion process based on the measurement error became the basis for students to attempt mathematical justification. Third, the manipulation activity using the semicircle was recognized as a natural and intuitive way of mathematical justification by the students and led to generalization. Fourth, the method of guiding the sum of the interior angles of a triangle using the measurement error contributed to the development of students' mathematical communication skills and positive attitudes toward mathematics.

Proposal of allowable prediction error range for judging the adequacy of groundwater level simulation results of artificial intelligence models (인공지능 모델의 지하수위 모의결과 적절성 판단을 위한 허용가능 예측오차 범위 제안)

  • Shin, Mun-Ju;Ryu, Ho-Yoon;Kang, Su-Yeon;Lee, Jeong-Han;Kang, Kyung Goo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.449-449
    • /
    • 2022
  • 제주도는 용수의 대부분을 지하수에 의존하므로 지하수위의 예측 및 관리는 매우 중요한 사항이다. 제주도의 지층은 화산활동에 의한 현무암이 겹겹이 쌓여있는 형태를 나타내며 육지의 지층구조와 매우 다른 복잡한 형태를 나타낸다. 이에 따라 제주도 지하수위의 예측은 매우 난해하며, 최근에는 딥러닝 인공지능 모델을 활용하여 지하수위를 예측하는 연구사례가 증가하고 있다. 기존의 연구들은 인공지능 모델들이 지하수위를 적절히 예측한다고 보고하고 있으나 예측의 적절성에 대한 판단기준을 제시하지 못하였으므로 이에 대한 명확한 제시가 필요하다. 본 연구의 목표는 인공지능을 활용한 지하수위 예측오차가 허용 가능한지 판단할 수 있는 기준을 제시함에 있다. 이를 위해 전 세계의 과거 20년 동안 관련 연구결과들을 수집 및 분석하였으며, 분석 결과 인공지능 모델의 지하수위 예측오차는 지하수위 변동성이 큰 지역일수록 증가하는 것을 확인하였다. 이것은 지하수위의 변동형태가 크고 복잡할수록 인공지능 모델의 지하수위 예측성능은 낮아진다는 것을 의미한다. 이 관계를 명확하게 나타내기 위해 지하수위 최대변동폭과 평균제곱근오차 및 최대오차와의 관계를 선형회귀식으로 도출하여 허용가능한 예측오차 기준을 제시하였다. 그리고 기존 연구들에서 제시한 Nash-Sutcliffe 효율성지수와 결정계수를 분석하여 선형회귀식에 의한 기준을 보완할 수 있는 추가적인 기준을 제시하였다. 본 연구에서 제시한 인공지능 모델에 의한 지하수위 예측결과의 적절성 판단기준은 향후 지속적으로 증가하는 인공지능 예측연구에 유용하게 사용될 수 있다.

  • PDF