• Title/Summary/Keyword: 목표수질평가

Search Result 129, Processing Time 0.02 seconds

Evaluation of the proficiency testing results using river water-based reference materials for heavy metal analysis (중금속분석용 하천수 매질표준물질을 이용한 숙련도 결과 평가)

  • Song, Ko-Bong;Kim, Young-Hee;Shin, Sun-Kyoung;Lee, Su-Yeong;Kim, Hyun-Jung;Kang, Hak-Gu;Kim, Il-Gyu;An, Hee-Ju
    • Analytical Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.284-294
    • /
    • 2010
  • In this study, river water-based reference materials (RMs), NIER-I08RW and NIER-I09, for trace metal analysis were prepared and certified for Pb, Cd, Cr and Cu with evaluation of uncertainties. The RMs were confirmed to be homogeneous enough to be used as proficiency testing materials since within-bottle homogenieties of the RMs were lower than 0.3 times of targeted standard deviation of proficiency testing. The RMs were distributed to environmental testing laboratories for the proficiency testing and the variation of Z scores of the proficiency testing results were compared for different assigned values. The relative bias, $B_{relative}$, deviations between reference values and consensus values, were lower than ${\pm}$1 except for cadmium of NIERI08RW. The results showed both values were in a good agreement and only 2.9% of Z scores changed by using a different assigned values such as consensus and reference values.

Research of Corrosion Control Technology for the Product Water of SWRO(Seawater Reverse Osmosis) by using liquid lime (액상소석회를 이용한 SWRO 생산수의 부식제어 연구)

  • Kim, Min-Chul;Hwang, Kyu-Won;Woo, Dal-Sik;Yoon, Seok-Min;Kwak, Myung-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.529-536
    • /
    • 2011
  • In this study, we confirmed that the SWRO(Sea Water Reverse Osmosis) production water has more hard corrosiveness than the tap water by fundamental experiment. According to the result, the target of this study was aimed at developing maintenance and anti-corrosion method. In the early stages of the research, batch tests using mild steel coupons and electrochemical experiments were applied to compare the corrosiveness between SWRO production water and the tap water. After then, two corrosion control methods for SWRO production water were applied. Liquid lime($Ca(OH)_2$) and Carbon Dioxide($CO_2$) were inserted and compared with the combination of liquid lime with phosphate corrosion inhibitor and carbon dioxide. The water qualities were evaluated through LSI(Langelier Saturation Index) and proper injection ratio was deduced by the result. Since then, simulated loop system test were performed to evaluate anti-corrosion effect depending on corrosion inhibitors. Subsequently, carbon steel pipes equipped at the loop system were detached for SEM, EDX and XRD analysis to acquire quantitative and qualitative data of the major corrosion products inside the pipes. In conclusion, the controled groups with anti-corrosion techniques applied were effective by appearing 97.4% and 90.9% of improvements in both case of liquid lime and the liquid lime with a phosphate corrosion Inhibitor. furthermore, major components of scale were iron oxides, on the other hand, protective effect of film formation by calcium carbonate($CaCO_3$) could be confirmed.

Rapid Bioassessments of Kap Stream Using the Index of Biological Integrity (생물보전지수(Index of Biological Integrity)의 신속한 생물평가 기법을 이용한 갑천 수계의 평가)

  • Yeom, Dong-Hyuk;Lee, Sung-Kyu;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.4
    • /
    • pp.261-269
    • /
    • 2001
  • The purpose of present study was to introduce a multimetric approach, so called the Index of Biological Integrity (IBI) as a tool for evaluations of water environments. We used 11 metric systems for the IBI to evaluate stream conditions, based on the fish community, and modified 5 original metric attributes suggested by Karr (1981). Overall IBI values in Kap Stream averaged 36 (n = 5) and ranged 17${\sim}$49, indicating a 'fair condition' according to the modified criteria of Karr (1981) and U.S. EPA (1993). However, there were distinct differences in the IBI values among 5 study sites. The IBI values at sites 1, 2, and 3 were 49, 45, and 41, which indicated 'good${\sim}$excellent', 'good', and 'fair' condition, respectively, while values at sites 4 and 5 were 17 and 29, which indicated 'very poor' and 'poor', respectively. The minimum IBI at site 4 was probably due to continuous inputs of wastewater from wastewater disposal plants. The condition at site 4 resulted in predominance of tolerant species (50%), omnivore species (50%), and high abnormalies (43%). In the mean time, the IBI value at site 5, located near 5km downstream from the site 4, increased compared to that of site 4, and this seemed to be a result of recovery of water quality as the polluted water goes downward. We believe that present bioassessment methodology of IBI applied in this study may be used as a key tool to set up specific goals for stream restoration plans and dentify recovery levels of lotic ecosystems after restoration activities(i.e., prevention of point-source pollutant input, restoration of physical habitats, construction of riparian vegetation) as well as a biological measure diagnosing current stream conditions.

  • PDF

A Survey on Fish Habitat Conditions of Domestic Rivers and Construction of Its Database (국내 어류 서식환경 조사 및 데이터베이스 구축)

  • Jung, Jin-Hong;Park, Ji-Young;Yoon, Young-Han;Lim, Hyun-Man;Kim, Weon-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.3
    • /
    • pp.221-230
    • /
    • 2014
  • In order to restore an ecologically damaged river, freshwater fish which inhabit at the target aquatic ecosystem have a great applicability as one of the essential indicators. Although the informations about the habitat conditions of freshwater fish are key elements reflecting biological, physical, and chemical properties of the aquatic environment, because of the lack of preceding related research and insufficient database with scattered data, they have not been applied effectively for the ecological river restoration projects in Korea. To cope with these problems, based on the nation-wide detailed investigation for domestic freshwater fish habitat conditions, we have selected 70 species considering the possibility for the candidates of flagship species, constructed a database for their population, physical, and chemical habitat properties, and suggested its application methodology for the river restoration projects. In particular, the utilization of the database has been enhanced by the additional statistical analysis to present their resistance and optimum ranges for physical, and chemical habitat properties respectively. It is expected that the database constructed in this study can be utilized for the calculation and evaluation of the appropriate ecological flow rate and target water quality for the selected flagship species (fish), and the basic data for the restoration of river environment.

Assessing the Action Plans in the Control Area(Soyang Reservoir) of Non-point Source Pollution (비점오염원 관리지역(소양호) 목표수질 달성도 평가)

  • Choi, Jaewan;Kang, Min-Ji;Ryu, Jichul;Kim, Dong-Il;Lim, Kyung-Jae;Shin, Dong-Seok
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.839-852
    • /
    • 2014
  • The Ministry of Environment (MOE) has made more effort in managing point source pollution rather than in nonpoint source pollution in order to improve water quality of the four major rivers. However, it would be difficult to meet water quality targets solely by managing the point source pollution. As a result of the comprehensive measures established in 2004 under the leadership of the Prime Minister's Office, a variety of policies such as the designation of control areas to manage nonpoint source pollution are now in place. Various action plans to manage nonpoint source pollution have been implemented in the Soyang-dam watershed as one of the control areas designed in 2007. However, there are no tools to comprehensively assess the effectiveness of the action plans. Therefore, this study would assess the action plans (especially, BMPs) designed to manage Soyang-dam watershed with the WinHSPF and the CE-QUAL-W2. To this end, we simulated the rainfall-runoff and the water quality (SS) of the watershed and the reservoir after conducting model calibration and the model validation. As the results of the calibration for the WinHSPF, the determination coefficient ($R^2$) for the flow (Q, $m^3/s$) was 0.87 and the $R^2$ for the SS was 0.78. As the results of the validation, the former was 0.78 and the latter was 0.67. The results seem to be acceptable. Similarly, the calibration results of the CE-QUAL-W2 showed that the RMSE for the water level was 1.08 and the RMSE for the SS was 1.11. The validation results(RMSE) of the water level was 1.86 and the SS was 1.86. Based on the daily simulation results, the water quality target (turbidity 50 NTU) was not exceeded for 2009~2011, as results of maximum turbidity in '09, '10, and '11 were 3.1, 2.5, 5.6 NTU, respectively. The maximum turbidity in the years with the maximum, the minimum, and the average of yearly precipitation (1982~2011) were 15.5, 7.8, and 9.0, respectively, and therefore the water quality target was satisfied. It was discharged high turbidity at Inbuk, Gaa, Naerin, Gwidun, Woogak, Jeongja watershed resulting of the maximum turbidity by sub-basins in 3years(2009~2011). The results indicated that the water quality target for the nonpoint source pollution management should be changed and management area should be adjusted and reduced.

Optimum Design of Outfall System by Analyzing Mixing Characteristics of Heat and Brine Discharge at Near Field Region (온배수 및 염배수의 근역혼합특성 분석을 통한 방류시스템의 최적설계)

  • Nam, Ki-Dae;Lee, Joong-Woo;Kim, Kang-Min;Kim, Ki-Dam;Kim, Pill-Sung
    • Journal of Navigation and Port Research
    • /
    • v.32 no.8
    • /
    • pp.637-643
    • /
    • 2008
  • When planning outfall system, the first target cif design is to maximize initial dilution of discharge effluent. To achieve the target effectively, the characteristics of mixing phenomenon between ambient and discharged water should be analyzed. Especially the analysis at the Near-Field-Region(NFR) as initial dilution zone should be preceded. Usually, the initial behavior of effluent through outfall system is rising toward the surface due to mixing with ambient water for heat discharge and sinking toward the bottom due to the difference of density for brine discharge. After mixed with eddies accompanied by the ambient water, the plumes are showing the same density and internal current pattern by advection and diffusion. Until recently, lots of studies are being carried out for the optimum design of outfall system. but it is difficult to find any studies of heat and brine discharge at the same time. Therefore, this study is hoped to provide some basic data for optimum design of outfall system.

A Study on the Management of Micropollutants in Water System Considering Climate Change and other Potential Effects (기후변화 등 잠재적 영향을 고려한 수중 미량오염물질의 관리방향 연구)

  • Kim, Hojeong;Hong, Yongsuk;Ahn, Jong Ho
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.645-654
    • /
    • 2013
  • In this study, the management polices of micropollutants (MPs) were reviewed and the future management strategy was discussed considering climate change and etc. In Korea, the investigation of drinking water has been actively carried out for the priority contaminants as well as MPs. Recently river and lake waters have been also examined for MPs. However, the coverage and depth of the investigation is limited. Moreover, climate change is likely to increase air & water temperature and it will affect the hydrological cycle. Such changes may increase the residual concentrations of MPs in water system. As water reuse increases, the residual MPs of the recycled water may create public concerns. Thus, in a viewpoint of the precautionary principle, more stringent management of MPs is recommended for the drinking water and the body-contact water use. For the surface water, more studies are necessary to understand the ecological risk by MPs.

Natural, Nature-based Features (NNbF) - A Comparative Analysis with Nature-based Solutions (NbS) and Assessment of Its Applicability to Korea (자연/자연기반 특징(NNbF) - 자연기반해법(NbS)과 비교분석 및 국내적용성 평가)

  • Hyoseop Woo
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.2
    • /
    • pp.31-39
    • /
    • 2023
  • NNbF is a newly emerging approach to reduce flood risk in coastal and fluvial areas using natural features or engineered nature-based features with the expectation of co-benefits of provisional, regulating, and socio-cultural services provided by the ecosystem. NNbF is not quite different from existing, related terms based on nature, such as NbS, Eco-DRR, NI, GI, EwN, and BwN, for all these terms include expectation of benefits for human societies by directly utilizing or mimicking nature's ecological functions. If we focus on the comprehensiveness of each term's subject and object, we can say that NbS > NNbF > (Eco-DRR, NI/GI). Among the 18 measures introduced in the NNbF International Guideline in the river and floodplain management category, it was found that measures of wash lands and floodplain restoration, including levee setback/removal and side-channel restoration, seemed to be the most applicable to rivers in Korea. These selected measures could be more effective when river managers purchase riparian lands along river courses by relevant laws for river water-quality protection.

Changes of Nitrifying Bacteria Depending on the Presence and Absence of Organic Pollutant in Nak-Dong River (낙동강에서의 유기성 오염 유무에 따른 질화세균의 변화)

  • Jin, Seon-Yeong;Lee, Young-Ok
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.137-145
    • /
    • 2013
  • This study was performed at 2 sites of Nak-Dong River to investigate the changes of nitrifiers depending on the presence and absence of organic pollutants (due to the effluents of domestic wastewater treatment plant, WWTP). Conventional chemical parameters such as T-N, $NH_4$-N, $NO_2$-N, $NO_3$-N were measured and the quantitative nitrifiers at the 2 sites were analyzed comparatively by fluorescent in situ hybridization (FISH) with NSO190 and NIT3, after checking the presence of gene amoA of ammonia oxidizing bacteria (AOB) and 16S rDNA signature sequence for Nitrobacter sp. that belongs to nitrite oxidizing bacteria (NOB). Also ${\alpha}{\cdot}{\beta}{\cdot}{\gamma}$-Proteobacteria were detected using FISH to get a glimpse of the general bacterial community structure of the sites. Based on the distribution structure of the ${\alpha}{\cdot}{\beta}{\cdot}{\gamma}$-Proteobacteria and the measurement of nitrogen in different phases, it could be said that the site 2 was more polluted with organics than site 1. Corresponding to the above conclusion, the average numbers of AOB and NOB detected by NSO160 and NIT3, respectively, at site 2 [AOB, $9.3{\times}10^5$; NOB, $1.6{\times}10^6$ (cells/ml)] was more than those at site 1 [AOB, $7.8{\times}10^5$; NOB, $0.8{\times}10^6$ (cells/ml)] and also their ratios to total counts were higher at site 2 (AOB, 27%; NOB, 34%) than those at site 1 (AOB, 18%; NOB, 23%). Thus, it could be concluded that the nitrification at site 2 was more active due to continuous loading of organics from the effluents of domestic WWTP, compared to site 1 located closed to raw drinking water supply and subsequently less polluted with organics.