Browse > Article
http://dx.doi.org/10.7845/kjm.2013.3029

Changes of Nitrifying Bacteria Depending on the Presence and Absence of Organic Pollutant in Nak-Dong River  

Jin, Seon-Yeong (Department of Biological Science, Daegu University)
Lee, Young-Ok (Department of Biological Science, Daegu University)
Publication Information
Korean Journal of Microbiology / v.49, no.2, 2013 , pp. 137-145 More about this Journal
Abstract
This study was performed at 2 sites of Nak-Dong River to investigate the changes of nitrifiers depending on the presence and absence of organic pollutants (due to the effluents of domestic wastewater treatment plant, WWTP). Conventional chemical parameters such as T-N, $NH_4$-N, $NO_2$-N, $NO_3$-N were measured and the quantitative nitrifiers at the 2 sites were analyzed comparatively by fluorescent in situ hybridization (FISH) with NSO190 and NIT3, after checking the presence of gene amoA of ammonia oxidizing bacteria (AOB) and 16S rDNA signature sequence for Nitrobacter sp. that belongs to nitrite oxidizing bacteria (NOB). Also ${\alpha}{\cdot}{\beta}{\cdot}{\gamma}$-Proteobacteria were detected using FISH to get a glimpse of the general bacterial community structure of the sites. Based on the distribution structure of the ${\alpha}{\cdot}{\beta}{\cdot}{\gamma}$-Proteobacteria and the measurement of nitrogen in different phases, it could be said that the site 2 was more polluted with organics than site 1. Corresponding to the above conclusion, the average numbers of AOB and NOB detected by NSO160 and NIT3, respectively, at site 2 [AOB, $9.3{\times}10^5$; NOB, $1.6{\times}10^6$ (cells/ml)] was more than those at site 1 [AOB, $7.8{\times}10^5$; NOB, $0.8{\times}10^6$ (cells/ml)] and also their ratios to total counts were higher at site 2 (AOB, 27%; NOB, 34%) than those at site 1 (AOB, 18%; NOB, 23%). Thus, it could be concluded that the nitrification at site 2 was more active due to continuous loading of organics from the effluents of domestic WWTP, compared to site 1 located closed to raw drinking water supply and subsequently less polluted with organics.
Keywords
FISH; nitrifier; organic pollutant; PCR-DGGE;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Alfreider, A., Pernthaler, J., Amann, R., Sattler, B., Glöckner, F.O., Wille, A., and Psenner, R. 1996. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization. Appl. Environ. Microbiol. 62, 2138-2144.
2 Schramm, A., Larsen, L.H., Revsbech, N.P., Ramsing, N.B., Amann, R., and Schleifer, K.H. 1996. Structure and function of a nitrifying biofilm as determined by in situ hybridi-zation and the use of microelectrodes. Appl. Environ. Microbiol. 62, 4641-4647.
3 Stephen, J.R., Chang, Y.J., Macnaughton, S.J., Kowalchuk, G.A., Leung, K.T., Flemming, C.A., and White, D.C. 1999. Effect of toxic metals on indigenous soil beta-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria. Appl. Environ. Microbiol. 65, 95 -101.
4 Stephen, J.R., McCaig, A.E., Smith, Z., Prosser, J.I., and Embley, T.M. 1996. Molecular diversity of soil and marine 16S rRNA gene sequences related to beta-subgroup ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 62, 4147-4154.
5 Su, J.J., Yeh, K.S., and Tseng, P.W. 2006. Piggery wastewater treatment systems with heterotrophic nitrification capability in Taiwan. Curr. Microbiol. 53, 77-81.   DOI   ScienceOn
6 Wagner, M., Rath, G., Koops, H.P., Floos, J., and Amann, R. 1996. In situ analysis of nitrifying bacteria in sewage treatment plants. Wat. Sci. Technol. 34, 237-244.
7 Winkler, M.K., Bassin, J.P., Kleerebezem, R., Sorokin, D.Y., and van Loosdrecht, M.C. 2012. Unravel-ling the reasons for disproportion in the ratio of AOB and NOB in aerobic granular sludge. Appl. Microbiol. Biotechnol. 94, 1657-1666.   DOI   ScienceOn
8 You, J., Das, A., Dolan, E.M., and Hu, Z. 2009. Ammonia-oxidizing archaea involved in nitrogen removal. Wat. Res. 43, 1801-1809.   DOI   ScienceOn
9 Manz, W., Szewzyk, U., Ericsson, P., Amann, R., Schleifer, K.H., and Stenström, T. 1993. In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Appl. Environ. Microbiol. 59, 2293-2298.
10 McCaig, A.E., Phillips, C.J., Stephen, J.R., Kowalchuk, G.A., Harvey, S.M., Herbert, R.A., Embley, T.M., and Prosser, J.I. 1999. Nitrogen cycling and community structure of proteobacterial beta-subgroup ammonia-oxidizing bacteria within polluted marine fish farm sediments. Appl. Environ. Microbiol. 65, 213-220.
11 Minister of Environment. 2009. Manual for the Examination of Water quality.
12 Park, H.D., Wells, G.F., Bae, H., Criddle, C.S., and Francis, C.A. 2006. Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl. Environ. Microbiol. 72, 5643-5647.   DOI   ScienceOn
13 Pernthaler, J., Glöckner, F.O., Unterholzner, S., Alfreider, A., Psenner, R., and Amann, R. 1998. Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Appl. Environ. Microbiol. 64, 4299-4306.
14 Rotthauwe, J.H., Witzel, K.P., and Liesack, W. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63, 4704-4712.
15 Purkhold, U., Pommerening-Roser, A., Juretschko, S., Schmid, M.C., Koops, H.P., and Wagner, M. 2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys. Appl. Environ. Microbiol. 66, 5368-5382.   DOI   ScienceOn
16 Regan, J.M., Harrington, G.W., Baribeau, H., DeLeon, R., and Noguera, D.R. 2003. Diversity of nitrifying bacteria in full-scale chloraminated distribution systems. Wat. Res. 37, 197-205.   DOI   ScienceOn
17 Rossello-Mora, R. and Amann, R. 2001. The species concept for prokaryotes. FEMS Microbiol. Rev. 25, 39-67.   DOI   ScienceOn
18 Schmidt, I., Hermelink, C., van de Pas-Schoonen, K., Strous, M., den Camp, H.J., Kuenen, J.G., and Jetten, M. 2002. Anaerobic ammonia oxidation in the presence of nitrogen oxides (NOx) by two different lithotrophs. Appl. Environ. Microbiol. 68, 5351-5357.   DOI
19 Schramm, A., de Beer, D., Wagner, M., and Amann, R. 1998. Identification and activities in situ of Nitrosospira and Nitirospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl. Environ. Microbiol. 64, 3480-3485.
20 Madigan, M.T., Martinko, J.M., Dunlap, P.W., and Clark, D.P. 2009. Anammox, pp. 603-604. In Biology of microorganisms. 12 ed. Pearson education.
21 Manz, W., Amann, R., Ludwig, W., Wagner, M., and Schleifer, K.H. 1992. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: Problems and solutions. Syst. Appl. Microbiol. 15, 593-600.   DOI
22 Belser, I.W. 1979. Population ecology of nitrifying bacteria. Ann. Rev. Microbiol. 33, 309-333.   DOI   ScienceOn
23 Herrmann, M., Saunders, A.M., and Schramm, A. 2008. Archaea dominate the ammonia-oxidizing community in the rhizosphere of the freshwater macrophyte Littorella uniflora. Appl. Environ. Microbiol. 74, 3279-3283.   DOI   ScienceOn
24 Cebron, A. and Garnier, J. 2005. Nitrobacter and Nitrospira genera as representatives if nitrite-oxidizing bactria: Detection, quantification and growth along the lower Seine River (France). Wat. Res. 39, 4979-4992.   DOI   ScienceOn
25 Degrange, V. and Bardin, R. 1995. Detection and counting of nitrobacter populations in soil by PCR. Appl. Environ. Microbiol. 61, 2093-2098.
26 Glöckner, F.O., Fuchs, B.M., and Amann, R. 1999. Bacterioplankton composition of lake and oceans: A first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65, 3721-3726.
27 Hicks, R., Amann, R., and Stahl, D.A. 1992. Dual staining of natural bacterioplankton with 4, 6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom level 16S rRNA sequences. Appl. Environ. Microbiol. 58, 2158-2163.
28 Hornek, R., Pommerenign-Röser, A., Koops, H.P., Farnleitner, A., Kreuzinger, H., Kirschner, N., Mach, A., and Robert, L. 2006. Primers containing universal bases reduce multiple amoA gene specific DGGE base patterns when analyzing the diversity of beta-ammonia oxidizers in the environment. Microbiol. Methods 66, 147-155.   DOI   ScienceOn
29 Kim, D.J., Hong, S.H., and Ahn, T.S. 1999. Seasonal and vertical change of bacterial communities in Lake Soyang. Kor. J. Microbiol. 35, 242-247.   과학기술학회마을
30 Kowalchuk, G.A., Naoumenko, Z.S., Derikx, P.J.L., Felske, A., Stephen, J.R., and Arkhipchenko, I.A. 1999. Molecular analysis of ammonia-oxidizing bacteria of the $\beta$ subdivision of the class Proteobacteria in compost and composted materials. Appl. Microbiol. Biotechnol. 65, 396-403.
31 Liu, Y. and Capdeville, B. 1994. Kinetic behaviors of nitrifying biofilm growth in wastewater nitrification. Environ. Technol. 15, 1001-1013.   DOI   ScienceOn
32 Lee, Y.O. 2008. Changes of nitrifying bacteria in the different zone (upper․mid․lower part) of the Nak-Dong river. J. Kor. Society Wat. Environ. 24, 214-220.   과학기술학회마을
33 Lee, Y.O. and Lee, H.S. 2002. Seasonal variations of nitrifying bacteria in agricultural reservoir. Kor. J. Limnol. 35, 152-159.   과학기술학회마을
34 Lee, H.S., Park, C.W., Kim, M.K., and Lee, Y.O. 2002. Seasonal variation of eubacterial community structure and their structure affecting environmental parameters in reservoir. Kor. J. Microbiol. 38, 31-37.   과학기술학회마을
35 Amann, R., Ludwig, W., and Schleifer, K.H. 1995. Phylogenetic and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169.
36 Anderson, I.C., Poth, M., Homstead, J., and Burdige, D. 1993. A comparison of NO and N2O production by the autotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis. Appl. Environ. Microbiol. 59, 3525-3533.