• Title/Summary/Keyword: 모형헬리콥터

Search Result 30, Processing Time 0.023 seconds

Attitude controller design and implementation for a helicopter propeller setup using a robust multivariable control (견실한 다변수 제어에 의한 모형 헬리콥터의 자세제어기 설계및 실현)

  • Lee, Seung-Guk;Lee, Myeong-Ui;Gwon, O-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.32-37
    • /
    • 1998
  • This paper deals with the implementation of a robust multivariable controller using DSP board and the application to real systems. The LQG/LTR (Linear Quadratic Gaussian with Loop Transfer Recovery) controller proposed by Doyle et al.[1,2] is adopted to design the control system. A helicopter propeller setup is taken as the controlled system in the current paper, and the mathematical model is derived to design the multivariable controller. The performance of the controller is evaluated via simulations, and implementation and application to the MIMO system shows that the control performances are satisfactory and superior to those of the PID controller.

  • PDF

Attitude Control of Simulated Helicopter (모형 헬리콥터의 자세 제어)

  • Kim, H.B.;Park, D.H.;Kim, T.W.;Ha, H.G.;Lee, J.T.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.86-88
    • /
    • 1997
  • The helicopter system is non-linear and complex. Futhermore, because of absence of an accurate mathematical model, it is difficult accurately to control its attitude therefore, we propose a fuzzy control technique to control efficiently its elevation angle and azimuth one. This controller is on the basis of expert's knowledges and his experiences. The simulation results using MATLAB are introduced.

  • PDF

Attitude Control of Model Helicopter using the LQR Controller (최적 LQR 제어기를 이용한 모형 헬리콥터의 자세 제어)

  • Han, Hak-Sic;Jeong, Sang-Chul;Kim, Gwan-Hyung;An, Young-Joo;Lee, Hyung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2171-2175
    • /
    • 2002
  • Helicopter dynamics are plenty of nonlinearity. A complete mathematical model including propeller dynamics and fortes generated by the propellers is very difficult to obtain. So the method used to design to design a controller is a parameter estimation. Design controller based on variable structure system. This paper deals with LQR control technique to control efficiently, its elevation angle and azimuth one. The purpose of the experiment is to design a controller allows to use a desired elevation angle and azimuth ones. The system model has a helicopter model with 2-degree-of freedom. The simulation results were verified usefulness of controller.

  • PDF

Attitude Control of Model Helicopter using PID Neural Natworks Controller (PID 신경망 제어기를 이용한 모형 헬리콥터의 자세 제어)

  • Park, Doo-Hwan;Lee, Joon-Tark;Ha, Hong-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.534-536
    • /
    • 1998
  • The helicopter system is non-linear and complex. Futhermore, because of absence of accurate mathematical model, it is difficult accurately to control its attitude. therefore, we propose a PID Neural Networks control technique to control efficiently its elevation angle and azimuth one. The coefficients of PID controller are automatically adjusted by the back-propagation algorithm of a neural network. The simulation results using MATLAB are introduced.

  • PDF

Improved 3-DOF Attitude Control of a Model Helicopter using Fuzzy-Tuning PID Controller (퍼지 동조 PID 제어기를 이용한 모형 헬리콥터의 개선된 3자유도 자세제어)

  • Park, Mun-Soo;Park, Duck-Gee;Jung, Won-Jae;Kim, Byung-Do;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2470-2472
    • /
    • 2001
  • This paper describes the application of a fuzzy-tuning PID controller to a 3-DOF attitude control of a small model helicopter in hover for the compensation of coupling effects between each axis and system uncertainties due to the variation of engine RPM. A Low-level PID controller is designed by Ziegler-Nichols method and its gains are tuned by a high-level fuzzy system based on error states and its time derivatives. The experimental results show that the attitude control performance of fuzzy-tuning PID controller is improved comparing with that of a Ziegler-Nichols PID controller and fuzzy controller.

  • PDF

Attitude Control of Helicopter Simulator System using A Hybrid GA-PID WAVENET Controller (Hybrid GA-PID WAVENET 제어기를 이용한 모형 헬리콥터 시스템의 자세 제어)

  • 박두환;지석준;이준탁
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.433-439
    • /
    • 2004
  • The Helicopter Simulator System is non-linear and complex. Futhermore, because of absence of its accurate mathematical model, it is difficult to control accurately its attitudes such as elevation angle and azimuth one. Therefore, we proposed a Hybrid GA-PID WAVENET(Genetic Algorithm Proportional Integral Derivative Wavelet Neural Network)control technique to control efficiently these angles. The proposed Hybrid GA-PID WAVENET is made through the following process. First, the WAVENET fundamental functions are defined. And their dilation and translation values are adjusted by GA to construct the optimal WAVENET controller. Secondly, the proportional, integral, and derivative gain coefficients of PR controller are tuned optimally. Finally, WAVENET controller which has a good transient characteristic and GA-PE controller which has a good steady state characteristic is adequately combined in hybrid type. Through the computer simulations, it is proved that the Hybrid GA-PE WAVENET control technique has a more excellent dynamic response than PID control technique and GA-PID one.

A Model of Military Helicopter Pilot Scheduling (군용 헬리콥터 조종사 스케줄링 모형)

  • Kim, Joo An;Lee, Moon Gul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.150-160
    • /
    • 2020
  • In this paper, we introduce a pilot's scheduling model which is able to maintain and balance their capabilities for each relevant skill level in military helicopter squadron. Flight scheduler has to consider many factors related pilot's flight information and spends a lot of times and efforts for flight planning without scientific process depending on his/her own capability and experience. This model reflected overall characteristics that include pilot's progression by basis monthly and cumulative flight hours, operational recent flight data and quickly find out a pinpoint areas of concern with respect to their mission subjects etc. There also include essential several constraints, such as personnel qualifications, and Army helicopter training policy's constraints such as regulations and guidelines. We presented binary Integer Programming (IP) mathematical formulation for optimization and demonstrated its effectiveness by comparisons of real schedule versus model's solution to several cases experimental scenarios and greedy random simulation model. The model made the schedule in less than 30 minutes, including the data preprocessing process, and the results of the allocation were more equal than the actual one. This makes it possible to reduce the workload of the scheduler and effectively manages the pilot's skills. We expect to set up and improve better flight planning and combat readiness in Korea Army aviation.

The Effect on Safety Perception with Ultra Light UAV Pilot's Educational Environment Satisfaction : Including the DREEM Model (초경량 무인비행장치 조종자의 교육환경 만족도가 안전의식에 미치는 영향 : DREEM 모형을 포함하여)

  • Jung, Hyung-hoon;Kim, Kee-woong;Choi, Youn-chul
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.114-124
    • /
    • 2019
  • The drone market, an unmanned aerial vehicle, is rapidly expanding and developing into an important area related to the huge changes in the traffic system of the future. With various technologies on the fourth industrial revolution, including drones, mentioned at the Davos Forum in January 2016, interest in drones is emerging as an explosive demand for national certificates. The number of drone pilots, which was only 400 in 2015, is continuing to surpass 17,000 as of 2018. Therefore, this study analyzed the safety perception of the pilots based on the DREEM (Dundee ready environmental assessment) model designed to evaluate the educational environment along with the current state of drone education in Korea. This led to the conclusion that the high level of satisfaction of the pilot with the educational environment contributes to the overall safety perception, including compliance with procedures.

Towards remote sensing of sediment thickness and depth to bedrock in shallow seawater using airborne TEM (항공 TEM 을 이용한 천해지역에서의 퇴적층 두께 및 기반암 심도 원격탐사에 관하여)

  • Vrbancich, Julian;Fullagar, Peter K.
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.77-88
    • /
    • 2007
  • Following a successful bathymetric mapping demonstration in a previous study, the potential of airborne EM for seafloor characterisation has been investigated. The sediment thickness inferred from 1D inversion of helicopter-borne time-domain electromagnetic (TEM) data has been compared with estimates based on marine seismic studies. Generally, the two estimates of sediment thickness, and hence depth to resistive bedrock, were in reasonable agreement when the seawater was ${\sim}20\;m$ deep and the sediment was less than ${\sim}40\;m$ thick. Inversion of noisy synthetic data showed that recovered models closely resemble the true models, even when the starting model is dissimilar to the true model, in keeping with the uniqueness theorem for EM soundings. The standard deviations associated with shallow seawater depths inferred from noisy synthetic data are about ${\pm}5\;%$ of depth, comparable with the errors of approximately ${\pm}1\;m$ arising during inversion of real data. The corresponding uncertainty in depth-to-bedrock estimates, based on synthetic data inversion, is of order of ${\pm}10\;%$. The mean inverted depths of both seawater and sediment inferred from noisy synthetic data are accurate to ${\sim}1\;m$, illustrating the improvement in accuracy resulting from stacking. It is concluded that a carefully calibrated airborne TEM system has potential for surveying sediment thickness and bedrock topography, and for characterising seafloor resistivity in shallow coastal waters.

Stability Test Using Froude Scaling Method of Emergency Flotation System for Helicopter (Froude Scaling 기법을 적용한 헬기 비상부주 장비 해수면 안정성 입증 시험)

  • Chang, In-Ki;Ryu, Bo-Seong;Kim, Joung-Hun;Kim, Young-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1089-1096
    • /
    • 2015
  • A marine helicopter should remain sufficiently upright to permit safe evacuation of all personnel with a flotation system. And the rule requires that after ditching in water, the adequate flotation time will allow the occupants to leave the rotorcraft. To this end, stability test of the emergency flotation system for Korean marine helicopter was performed by using "Froude scaling method" in water tank. Test configuration and conditions were determined in consideration of the helicopter loading condition and related specifications. Test results meet the stability requirements at sea state code 4 and sea state code 2 with puncture conditions.