슈퍼스칼라 프로세서는 성능향상을 위해 명령어 반입 폭과 이슈 폭을 증가시키고 있다. 최근 여러 논문들에서 데이터 종속성을 제거하기 위해서 명령어의 결과 값을 예상하는 메커니즘이 연구되었다. 그러나 그러한 예측기들은 예상한 명령어의 실제 결과 값으로 예상 테이블을 갱신하기 전에 그 명령어를 다시 예상할 때 예상 실패율이 증가하여 프로세서의 성능을 감소시킨다. 본 논문에서는 비 순서적(out-of-order)으로 이슈 및 실행하는 프로세서에서 예상 적중율을 향상시키기 위해 명령어 반입 시 결과 값을 예상하는 동시에 예측기 테이블을 모험적으로 갱신(Speculative update)하는 하이브리드 결과 값 예측기를 제안한다. 본 논문에서 제안한 모험적 갱신이 예상 적중률을 향상시킬 수 있음을 보이기 위해 SimpleScalar 3.0 툴 셋을 사용하여 SPECint95 벤치마크 프로그램에서 명령어를 예상한 후 결과가 구해져서 예상테이블을 수정하기 전에 그 명령어를 다시 예상하는 빈도수를 측정하였다.
슈퍼스칼라 프로세서에서 값 예측기는 한 명령어의 결과를 미리 예측하여 명령들 간의 데이터 종속관계를 극복하고 실행함으로써 명령어 수준 병렬성 (Instruction Level Parallesim, ILP)을 향상시키는 기법이다. 최근의 값 예측기는 프로세서의 명령 이슈율이 커짐에 따라 예측 테이블의 갱신이 테이블의 참조 속도를 따라가지 못하여 예측기의 성능이 저하되는 경향이 있다. 본 논문에서는 이러한 성능저하를 줄이기 위해 명령의 결과가 나올 때까지 기다리지 않고 테이블 값을 모험적으로 갱신(speculative update)하는 스트라이드 값 예측기를 제안한다. 제안된 방식의 타당성을 검증하기 위해 SimpleScalar 시뮬레이터 상에 제안된 예측기를 구현하여 SPECint95 벤치마트를 시뮬레이션하고 제안된 스트라이드 모험적 갱신(stride speculative update)이 기존의 스트라이드 예측기 보다 성능이 향상됨을 보인다.
슈퍼스칼라 프로세서는 성능향상을 위해 명령어 반입폭과 이슈율을 증가시키고 있다. 데이터 종속성은 ILP(Instruction-Level Parallelism)를 향상시키는데 주요 장애요소가 되고 있으며, 최근 여러 논문에서 데이터 종속성을 제거하기 위해서 명령어의 결과값을 예상하는 메커니즘이 연구되었다. 그러나 이러한 예측기들은 예상한 명령어의 실제 결과값으로 예상 테이블을 갱신하기 전에 그 명령어를 다시 예상할 때 부적절(stale)한 데이터를 사용함으로써 예상 실패율이 증가하여 프로세서의 성능을 감소시킨다. 본 논문에서는 부적절 데이터 사용을 줄여 높은 성능을 얻을 수 있는 새로운 하이브리드 예측 메커니즘을 제안한다. 제안된 하이브리드 결과값 예측기는 예상 테이블을 모험적으로 갱신할 수 있기 때문에 부적절 데이터로 인해 잘못 예상되는 명령어의 수를 효과적으로 감소시킨다. 16-이슈폭 슈퍼스칼라 프로세서에서 SPECint95 벤치마크 프로그램에 대해 모험적 갱신을 사용함으로써 모험적 갱신을 사용하지 않은 경우의 평균 예상 정확도 59%에 비해 평균 예상 정확도가 72%에 비해 평균 예상 정확도가 72%로 크게 향상되었다.
슈퍼스칼라 프로세서에서 값 예측(value prediction)은 한 명령의 결과를 미리 예측하여 명령들 간의 데이터 종속관계를 극복하고 실행함으로써 명령어 수준 병렬성(Instruction Level Parallesim, ILP)을 이용하는 기법이다. 값 예측기(value predictor)는 명령어 페치 시에 예측 테이블을 참조(lookup)하여 값을 예측하고, 명령의 실행 후 판명된 예측 결과에 따라 테이블을 갱신(update)하여 이 후의 참조를 대비한다. 그러나, 최근의 값 예측기는 프로세서의 명령 페치 및 이슈율이 커짐에 따라 예측 테이블이 갱신되기 전에 다시 같은 명령이 페치되어 갱신되지 못한 낡은 값(stale value)으로 예측되는 경우가 빈번히 발생하여 예측기의 성능이 저하되는 경향이 있다. 본 논문에서는 이러한 성능저하를 줄이기 위해 명령의 결과가 나올 때가지 기다리지 않고 테이블 값을 모험적으로 갱신(speculative update)하는 스트라이트 값 예측기(stride value predictor)를 제안한다. 제안된 방식의 타당성을 검증하기 위해 SimpleScalar 시뮬레이터 상에 제안된 예측기를 구현하여 SPECint95 벤치마크를 시뮬레이션하고 제안된 모험적 갱신의 스트라이드 예측기가 기존의 스트라이드 예측기 보다 성능이 향상됨을 보인다.
데이터 종속성을 제거하기 위해서 명령어의 결과값을 예상하는 여러 결과값 예측기의 장점을 이용하여 놓은 성능을 얻을 수 있는 새로운 혼합형 예측 메커니즘을 제안한다. 제안된 혼합형 결과값 예측기는 예상 테이블을 모험적으로 갱신할 수 있기 때문에 부적절한(Stale) 데이터로 인해 잘못 예상되는 명령어의 수를 효과적으로 감소시킨다. 또한 정적 분류 정보를 사용하여 명령의 반입시 적절한 예측기에 할당함으로써 예상 정확도를 더욱 향상시키며, 하드웨어 비용을 효율적으로 감소시키도록 하였다. 5개의 SPECint 95 벤치마크 프로그램에 대해 SimpleScalar/PISA 3.0 툴셋을 사용하여 실험하였다. 16-이슈 폭에서 모험적 갱신을 사용한 평균 예상 정확도는 73%의 실험 결과가 나왔으며, 정적 분류 정보를 사용하였을 경우 예상 정확도가 88%로 증가된 결과를 얻었다.
데이타 종속성을 제거하기 위해서 명령어의 결과값을 예상하는 여러 결과값 예측기의 장점을 이용하여 높은 성능을 얻을 수 있는 새로운 혼합형 예측 메커니즘을 제안한다. 제안된 혼합형 결과값 예측기는 예상 테이블을 모험적으로 갱신할 수 있기 때문에 부적절한(stale) 데이타로 인해 잘못 예상되는 명령어의 수를 효과적으로 감소시킨다. 또한 정적 분류 정보를 사용하여 명령의 반입시 적절한 예측기에 할당함으로써 예상 정확도를 더욱 향상시키며, 하드웨어 비용을 효율적으로 감소시키도록 하였다. 5개의 SPECint 95 벤치마크 프로그램에 대해 SimpleScalar/PISA 3.0 툴셋을 사용하여 실험하였다. 16-이슈 폭에서 모험적 갱신을 사용한 평균 예상 정확도는 73%의 실험 결과가 나왔으며, 정적 분류 정보를 사용하였을 경우 예상 정확도가 88%로 증가된 결과를 얻었다.
조건 분기예측은 프로세서 성능 개선을 위한 중요한 기술이다 그러나, 분기예측실패는 많은 사이클을 낭비시키며, 비순서적 실행을 방해하고, 잘못 예측된 명령어들을 수행하게 되므로 전력을 낭비한다. 따라서 높은 정확도를 갖는 분기 예측기는 좋은 성능을 갖는 프로세서를 위해 중요하다. gshare와 GAg같은 전역 히스토리를 기반으로 하는 예측기에서는 히스토리의 명령어 완료시간 갱신 (commit update)에 의해 많은 분기예측실패가 발생한다. 그런 문제를 해결하기 위해 히스토리를 모험적으로 갱신하고, 분기예측실패 시 히스토리를 복구시키는 메커니즘에 관한 연구의 필요성이 제시되었고, 연구 되었다. 본 논문에서는 분기예측실패 발생 후 분기 히스토리를 복구하는 간단한 복구 메커니즘을 제안한다. 제안한 복구 메커니즘은 기존 분기예측기에 age_counter를 추가하고 분기 히스토리 레지스터 크기를 2배로 확장시킨다. age_counter는 미해결 분기명령어 수를 저장하며, 분기예측실패 후 분기 히스토리 레지스터를 복구하는데 사용한다. Simplescalar 3.0/PISA 툴셋과 SPECINT95 벤치마크 프로그램에서 시뮬레이션 한 결과, 제안된 복구 메커니즘을 gshare와 GAg 예측기에 적용하였을 때 예측 정확도와 프로세서 성능을 개선시킬 수 있었음 을 보여준다. GAg와 gshare 예측기에서 예측정확도는 각각 9.21$\%$와 2.14$\%$가 개선되었고, WC는 18.08$\%$와 8.75$\%$ 개선되었다.
최근의 고성능 슈퍼스칼라 프로세서에서는 명령어 수준 병렬성(Instruction-Level Parallelism, ILP)의 장애가 되는 명령어 간의 데이타 종속관계를 극복하기 위해 명령의 결과 값을 미리 예측하여 종속 명령들을 모험적으로 실행한다. 이러한 값 예측을 사용한 모험적 실행으로 성능은 향상되나 값 예측 테이블의 빈번한 참조와 갱신으로 부가적인 전력 소모를 요구한다. 본 논문에서는 값 예측으로 인한 성능향상과 부가적인 전력소모 간의 관계를 측정 분석한다. 또한 확신 카운터(confidence counter)를 사용한 값 예측 시도의 조정으로 모험적 실행의 정도를 조절하고, 예측 성공률이 높은 유용한 명령들만을 선택적으로 예측하여 성능을 유지하면서 부가 전력소모를 줄인다. 제안된 방식의 검증을 위해 사이클 수준 시뮬레이터에 전력소모 모델을 결합하여 프로세서의 기능수준 동작뿐만 아니라 프로세서의 전체 전력소모 및 사이클 당 전력소모도 측정할 수 있는 도구를 개발하여 검증한다.
조건 분기예측실패는 많은 사이클을 낭비시키며, 비순서적 실행을 방해하고, 잘못 예측된 명령어들을 수행하게 되므로 전력을 낭비한다. gshare와 GAg같은 전역 히스토리를 기반으로 하는 예측기에서는 히스토리의 명령어 완료시간 갱신(commit update)에 의해 많은 분기예측실패가 발생한다. 이를 위해 히스토리를 모험적으로 갱신하고, 분기예측실패 시 히스토리를 복구시키는 메커니즘에 관한 연구들이 제시되었다. 본 논문에서는 기존 분기예측기에 age_Counter를 추가하여 미해결 분기명령어 수를 저장하며, 이를 분기예측실패 후 분기 히스토리 레지스터를 복구하는데 사용하는 간단한 복구 메커니즘을 제안한다. SimpleScalar 3.0/PISA 툴셋과 SPECINT95 벤치마크 프로그램에서 시뮬레이션 한 결과, 제안된 복구 메커니즘은 GAg와 gshare 예측기에서 예측정확도는 각각 $9.21\%$와 $2.14\%$가 개선되었고, IPC는 $18.08\%$와 $8.75\%$ 개선되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.