• Title/Summary/Keyword: 모터 냉각 시스템

Search Result 37, Processing Time 0.028 seconds

A Novel Cooling Method by Acoustic Streaming Induced by Ultrasonic Resonator (초음파 진동자에 의해 유도된 음향유동을 이용한 첨단 냉각법)

  • 노병국;이동렬
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.217-223
    • /
    • 2003
  • A novel cooling method induced by acoustic streaming generated by ultrasonic vibration at 30㎑ is presented. Ultrasonic vibration is obtained by piezoelectric devices and the maximum vibration amplitude of 50 m is achieved by including a horn, mechanical vibration amplifier in the system and making the complete system resonate. To investigate the enhancement of heat transfer capability of acoustic streaming, the temperature variations of heat source and air in the vicinity of heat source are measured in real-time. It is observed that acoustic streaming is instantly induced by ultrasonic vibration, resulting in the significant temperature drop due to the bulk air flow caused by acoustic streaming. In addition, it is observed that the cooling effect on the heat source is maximized when the gap between the ultrasonic vibrator and heat source coincides with the multiples of half-wavelength of the ultrasonic wave. This fact results from the resonance of the sound wave. The theoretical analysis of the dependence on the gap is also accomplished and verified by experiment. The advantage of the proposed cooling method by acoustic streaming is noise-free due to the ultrasonic vibration and maintenance-free because of the absence of moving parts. Moreover. This cooling method can be utilized to the nano and micro-electro mechanical systems, where the fan-based conventional cooling method can not be employed.

A Study on the Cooling Parameter Decision of Linear Motor System by Finite Volume Method (유한체적법을 이용한 리니어모터 시스템의 냉각조건 선정에 관한 연구)

  • Hwang Y.K.;Eun I.E.;Lee C.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.449-450
    • /
    • 2006
  • Development of a feed drive system with high speed, positioning accuracy and thrust has been an important issue in modern automation systems and machine tools. Linear motors can be used as an efficient system to achieve such technical demands. By eliminating mechanical transmission mechanisms such as ball screw or rack-pinion, much higher speeds and greater acceleration can be achieved without backlash or excessive friction. However, an important disadvantage of linear motor system is its high power loss and heating up of motor and neighboring machine components on operation. For the application of the linear motors to precision machine tools an effective cooling method and thermal optimizing measures are required. In this paper presents an investigation into a thermal behavior of linear motor cooling plate. FVM employed to analyze the thermal behavior of the linear motor cooling plate, using the ANSYS-CFX.

  • PDF

전기자동차의 구동제어기술

  • 대한전기협회
    • JOURNAL OF ELECTRICAL WORLD
    • /
    • s.241
    • /
    • pp.81-86
    • /
    • 1997
  • 자동차의 배출가스가 가져오는 대기오염문제로 배출하지 않는 장점이 있는 전기자동차의 도입이 계획되고 있는 한편, 세계의 자동차관련메이커들은 꾸준히 개발$\cdot$개량을 추진하고 있다. 그 기술은 착실하게 진전되어 근거리역내에서의 교통수단으로서는 실용역에 이르고 있으며 앞으로 실용화를 위한 시험이 본격화될 것으로 보인다. 삼릉전기(주)에서는 보다 고성능의 전기자동차의 실용화를 위하여 유도전동기와 선진 구동제어 기술의 연구$\cdot$개발에 진력하여 유도전동기와 선진 구동제어기술을 조합한 구동시스템을 개발하였다. 유도전동기는 고속화, 냉각의 수냉화, 스테이터절연의 고내열화, 저손실코어재의 적용 등으로 소형$\cdot$경량화를 기하였다. 컨트롤러는 인버터의 파워소자에 구동$\cdot$보호회로를 내장한 IPM(Intelligent Power Module)을 채용하고 유도모터의 고효율화와 토크제어의 고응답$\cdot$고정도화를 양립시킨 고효율$\cdot$고응답벡터제어를 적용하였다. 또한 속도센서의 생략으로 코스트저감과 신뢰성의 향상을 위한 속도센서레스제어의 적용을 검토하고 있다. 이상으로 소형$\cdot$경량$\cdot$고효율$\cdot$저코스트를 조화시킨 고성능의 전기자동차구동시스템을 실현하였다.

  • PDF

Experimental Study on Meso-Scale Milling Process Using Nanofluid Minimum Quantity Lubrication (나노유체를 이용한 메소스케일 밀링 가공 특성에 관한 실험적 연구)

  • Lee, P.H.;Nam, T.S.;Li, Chengjun;Lee, S.W.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1493-1498
    • /
    • 2010
  • This paper present the characteristics of micro- and meso-scale milling processes in which compressed cold air, minimum quantity lubrication (MQL) and $MoS_2$ nanofluid MQL are used. For process characterization, the microand meso-scale milling experiments are conducted using desktop meso-scale machine tool system and the surface roughness is measured. The experimental results show that the use of compressed chilly air and nanofluid MQL in the micro- and meso-scale milling processes is effective in improving the surface finish.

Study of Fire Examples for Electrical Wire Short and Insulated Coating Melting by Heating Including Automotive Engine Room (자동차 엔진룸 관련 전기 배선의 단락 및 열에 의한 절연피복 용융에 대한 화재사례 연구)

  • Lee, Il Kwon;Kim, Young Gyu;Youm, Kwang Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.15-19
    • /
    • 2013
  • This paper is to analyze and study the cause of fire examples produced because of short phenomenon by electric connecting damage and contacting engine over-heating with combustible materials in engine room of vehicle. In the first example, it knew the fact that the fire produced by contacting with body of vehicle because of loosed of bracket bolt for wire fixing that installed on the transmission case the battery power cable supply the power from battery of engine room to starting motor. In the second example, it certified the fire by short phenomenon because of insulation tape melting wound wiring lined from battery to starting motor. In the third example, it sought for fire's cause that melting phenomenon the wire coating by overheated engine as the wire disconnected with connector by the vibration. Therefore, the fire of system including engine electric made in the danger the people in the car by failure of engine and other system. And than, the car's driver must manage and examine a vehicle conscientiously.

Implementation of Position Sensorless Stroke Controller of Linear Compressors with Motor Parameter Identification (매개변수 추정기를 갖는 리니어 컴프레서의 위치센서리스 스트로크 제어기 구현)

  • Kim, Kwang-Ho;Nam, Jae-Woo;Kim, Gyu-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.173-179
    • /
    • 2014
  • In this paper, a motor parameter identification system has been implemented to improve the performance of the position sensorless stroke controller for linear compressors. In order to control the cooling capability of a refrigerator or an air conditioner in which linear compressors are applied, the piston speed should be controlled. The piston speed control can be obtained by adjusting the frequency or the stroke of linear motors. The dynamic performance of linear compressors depends on how accurately the stroke or the piston amplitude is estimated. The merits and demerits of Constant method and PIM (Parameter Identification Method) concerning the needed memory space and the stroke error are discussed and verified via some experimental studies.

Protection of the Inverter for Electric Vehicles (전기자동차용 인버터의 보호기능)

  • Jun, Bum-su;Lee, Jae-shin;Kim, Ung-hoe;Kim, Hyoung-taek;Won, Chung-yuen
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.227-228
    • /
    • 2011
  • EV의 중요한 부품은 MCU(인버터), BMS(고전압), LCD(저전압 충전장치), OBC(완속충전장치), EWP(냉각장치), PTC(히터), A/C(에어컨) 등으로 구성되어 있으며, 특히 EV용 인버터의 경우 핵심 부품으로 신뢰성 및 보호기능에 대한 중요성이 인식되고 있다. EV 인버터는 온도(인버터, 모터), 단락과 단선, 인터락 및 최대출력제한 등에 대한 보호기능 구현이 되어 있으며, 고장발생시 고장을 진단할 수 있는 기능(DTC)이 구현되어 있다. 이러한 보호기능 중에 단락과 단선 시 인버터의 보호는 중요한 요소이며, 이를 구현하기 위한 회로설계 및 회로분석이 필요하다. 본 논문에서는 EV용 인버터에 사용되는 병렬 운전형 인버터의 단락 및 단선 시 시스템을 보호할 수 있는 드라이버 회로 설계 및 분석을 수행하며, 실험을 통해 그 결과를 검증한다.

  • PDF

Quantitative vibratory sense measurement systems of a diabetic neuropathy (당뇨병성 신경병증의 정량적 진동 감각 측정 시스템)

  • Ryu, Bong-Jo;Kim, Youngshik;Koo, Kyung-Wan
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.615-620
    • /
    • 2018
  • Evaluation of clinical usefulness of current perception threshold test and vibration sense perception threshold test in diagnosing the diabetic poly-neuropathy patients is one of the diagnosis methods for diabetic poly-neuropathy. Up to the present, some diagnostic methods were used for diabetic poly neuropathy patients. For example, there are neuropathy impairment score test of lower limbs, nerve conduction test, cooling detection threshold test, heat-pain threshold test and so on. However, most of the above tests require very expensive cost and take a lot of time in test. In this paper, a new apparatus estimating vibration sense ability is introduced. For this purpose, the VCM(voice coil motor) stimulating patient's peripheral nerve and current amplifier were manufactured. Also, softwares sensing and driving the vibration detection threshold test in order to measure the quantitative vibration sensory levels in diabetic poly-neuropathy patients were developed.

Dynamic Modeling of Cooling System Thermal Management for Automotive PEMFC Application (자동차용 연료전지 냉각계통 열관리 동적 모사)

  • Han, Jae Young;Lee, Kang Hun;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1185-1192
    • /
    • 2012
  • The typical operating temperature of an automotive fuel cell is lower than that of an internal combustion engine, which necessitates a refined strategy for thermal management. In particular, the performance of the cooling module has to be higher for a fuel cell system because the temperature difference between the fuel cell and the surrounding is lower than in the case of the internal combustion engine. Even though the cooling system of an automotive fuel cell determines the operating temperature and temperature distribution of the fuel cell, it has attracted little research attention. This study presents the mathematical model of a cooling system for an automotive fuel cell system using Matlab/$Simulink^{(R)}$. In particular, a radiator model is developed for design optimization from the development stage to the operating stage for an automotive fuel cell. The cooling system model comprises a fan, pump, and radiator. The pump and fan model have an empirical relation, and the dynamics of the pump and fan are only explained by motor dynamics. The basic design study was conducted, and the geometric setup of the radiator was investigated. When the control logic was applied, the pump senses the coolant inlet temperature and the fan senses the coolant out temperature. Additionally, the cooling module is integrated with the fuel cell system model so that the performance of the cooling module can be investigated under realistic operating conditions.

Design and Performance Test of a Cryogenic Blower for Space Thermal Environment Simulation (우주 열환경 모사용 소형 극저온 블로워 설계 및 성능평가)

  • Seo, Heejun;Ahn, Sungmin;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.833-839
    • /
    • 2013
  • Thermal vacuum test should be performed prior to launch to verify satellites' functionality in a harsh space environment which is represented by extremely cold temperatures and vacuum conditions. A thermal vacuum chamber which consists of a vacuum vessel, a pumping system, and a thermal control system are used to perform thermal vacuum tests of a satellite system and its components. A cryogenic blower is a core component of the closed loop thermal control system for thermal vacuum chambers. This paper describes the fan design of the cryogenic blower, the design of the thermal protection interface between the driving part and the fluid part, which were verified by thermal and structural analyses. The performance of the cryogenic blower is confirmed by similarity test on the test bench.