• 제목/요약/키워드: 모자 단면

검색결과 32건 처리시간 0.032초

FEM에 의한 점용접된 이중모자형 단면부재의 축방향 압궤특성에 관한 연구 (A Study on Axial Collapse Characteristics of Spot Welded Double-Hat Shaped Section Members by FEM)

  • 차천석;김영남;양인영
    • 한국정밀공학회지
    • /
    • 제18권7호
    • /
    • pp.120-126
    • /
    • 2001
  • The widely used spot welded section members of vehicles are structures which absorb most of the energy in a front-end collision. In front-end collision, sufficiently absorbed in the front parts, the impact energy does not reach the passengers. Simultaneously, the frame gets less damaged. This structures have to be very stiff, but collapse progressively to absorb the kinetic energy as expected. In the view of stiffness, the double-hat shaped section member is stiffer than the hat shaped section member. In progress of collapse, the hat shaped section member is collapsing progressively, but the double-hat shaped section member does not due to stiffness. An analysis on the hat shaped section member was previously completed. This paper concerns the collapse characteristic of the double-hat shaped section member. In the program system presented in this study, an explicit finite element code, LS-DYNA3D is adopted for simulating complicate collapse behavior of double hat shaped section members with respect to spot weld pitches. And comparing with the results from the quasi-static and impact experiment, the simulation has been verified.

  • PDF

적층각도 변화를 갖는 CFRP 모자형 단면부재의 열습 및 충격손상 평가 (Hygrothermal and Impact Damage Evaluation of CFRP Hat shaped sectional members with Stacking Angle Variation)

  • 양용준;심재기
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.782-789
    • /
    • 2010
  • It is important to satisfy the requirements and standards for the protections of passengers in a car accident. There are lots of studies on the crushing energy absorption of a structure member in automobiles. In this paper, we have studied to investigate collapse characteristics and moisture absorption movements of CFRP( carbon fiber reinforced plastics) structure members when CFRP laminates are under the hygrothermal environment. In particular, the absorbed energy, mean collapse load and deformation mode were analyzed for CFRP members which absorbed most of the collision energy. Also, variation of stacking angle is important to increase the energy absorption capability. The purpose of this study is to evaluate the strength reduction and moisture absorption behavior of CFRP hat shaped member. Therefore we have made a impact collapse experiment to research into the difference of absorbed energy and deformation mode between moisture absorbed specimen and non-moisture absorbed. As a result, the effect of moisture absorption and impact loads of approximately 50% reduction in strength are shown.

이종재료의 결합방법에 따른 모자형 단면부재의 충돌실험 (Crushing Test of the Double Hat-shaped Members of Dissimilar Materials by Seining Methods)

  • 이명한;박영배;김헌영;오수익
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.129-134
    • /
    • 2005
  • There is a strong industrial demand for the development of light-weight vehicle to improve fuel efficiency and dynamic performance. The effective method of achieving the weight reduction is to use low-density materials such as aluminum and magnesium. In applying these materials to the vehicle, it is often required to join dissimilar materials such as aluminum and steel. However, conventional joining method, namely resistance spot welding cannot be used in joining dissimilar materials. Self·piercing rivet(SPR) and adhesive bonding is a good alternative to resistance spot welding. In this study, the impact test of double hat-shaped member made by resistance spot welding, SPR and adhesive bonding was performed. As a result, various parameters of crashworthiness were analyzed and evaluated. Also, the applicability of SPR and adhesive bonding as an alternative to resistance spot welding was suggested.

속도변화에 따른 점용접된 모자형단면부재의 에너지흡수 특성 (Energy Absorption Characteristics for Spot Welded Hat-shaped Section Members at Various Velocities)

  • 심재기;차천석;양인영
    • 한국공작기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.114-120
    • /
    • 2006
  • Front-end side members of vehicles are structures with the greatest energy absorbing capability in a front-end collision of vehicles. This paper was undertaken to analyze the energy absorption characteristics of spot welded hat and double hat-shaped section members under the axial collapse. The experiments were performed with respect to the various collapse velocities. It was expected that para-closed sections would show collapse characteristics which be quite different from those of perfectly closed sections. The collapse velocities were selected as follows: the velocities in the hat-shaped section members were 0.00017m/sec, 0.017m/sec, 4.7m/sec, 6.5m/sec, 6.8m/sec, 7.2m/sec, and 7.3m/sec those in the double hat-shaped section members were 0.00017m/sec, 0.017m/sec, 6.5m/sec, 6.8m/sec, 7.2m/sec 7.3m/sec, and 7.9m/sec. In the program system presented in this study, an explicit finite element code, LS-DYNA3D, is adopted for simulating complicated collapse behavior of the hat and double hat-shaped section members under the same condition of the collapse test. The validity of simulation was confirmed by the comparison between the simulation result and the collapse experiment.

모자형 단면부재의 압괴특성 연구 (A Study on Crushing Characteristic of Hatted Section Tube)

  • 김천욱;한병기;김병삼
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.212-219
    • /
    • 2002
  • In the frontal collision of cars, front parts of cars such as engine rail and side members that are composed of hatted section tubes should absorb most of the collision energy far the passenger compartment not to be deformed. For these reasons the study on the collapse characteristics, maximum crushing load and energy absorption capacity of hatted section tubes are needed. In this study, top hatted section tubes and double hatted section tubes are investigated. The maximum crushing load of hatted section tubes is induced from plastic buckling stress of plates by considering that the hatted section tubes are composed of plates with each different boundary conditions and that its material has a strain hardening effect. On this concept maximum crushing load equations of hatted section tubes are derived and verified by experiments. from the results of experiment, the differences of collapse characteristics between top hatted section tube and double hatted section tube are analysed. And mean crushing loads of hatted section tubes from experiments are compared with other theory.

FEM에 의한 단일모자형 단면부재의 축방향 충격압궤 해석 (Axial Impact Collapse Analysis on Hat-shaped Members by FEM)

  • 차천석;강종엽;양인영
    • 한국정밀공학회지
    • /
    • 제17권12호
    • /
    • pp.129-136
    • /
    • 2000
  • In the frontal collision the spot welded hat-shaped section side member is the fundamental structure for automobiles and has a great amount of absorbing capacity. For this reason LS-DYNA3D has been used for analyzing impact collapse characteristics on hat shaped section member with respect to the valuables; thickness, width ratio and spot weld potch on impact load(7.19m/sec, 1034J). By comparing the results from simulation and the experimental results, the utilization of simulation has been certified.

  • PDF

온도 변화에 따른 열습 환경하에서의 CFRP 모자형 단면부재의 강도평가 (Strength Evaluation on CFRP Hat-shaped Sectional Members According to Changes in Temperature Under Hygrothermal Environment)

  • 양용준;국현;양인영
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.892-896
    • /
    • 2012
  • CFRP composites with light weight, high strength, and high elasticity by comparing with metal are widely used rather than previous steel plates. However, CFRP composite material has the weakness at hydrothermal and collapsed impact environment. Especially, moisture absorption into composite material can change molecule arrangement and chemical properties under hydrothermal environment. And static collapse experiment is the research in the differences of absorbed energy and deformation mode between moisture and non-moisture absorbed specimens. This study is compared and analyzed on the progress change of moisture absorption ratio after setting up the temperatures of 60 and 80 degrees C in order to comprehend how the change in the temperature influences on moisture absorption status inside CFRP composite materials.

고온.고습 환경 하에서의 계면수 변화에 따른 CFRP모자형 단면 부재의 압궤특성 (Collapse Characteristics of CFRP Hat Shaped members According to Variation of Interface Numbers under the Hygrothermal Environment)

  • 양용준;차천석;양인영
    • 한국생산제조학회지
    • /
    • 제18권3호
    • /
    • pp.241-247
    • /
    • 2009
  • It is important to satisfy the requirements and standards for the protections of passengers in a car accident. There are lots of studies on the crushing energy absorption of a structure members in automobiles. We have studied to investigate collapse characteristics and moisture absorption movements of CFRP(Carbon Fiber Reinforced Plastics) hat shaped sectional members when CFRP laminates are under the hygrothermal environment. In particular, the absorbed energy, mean collapse load and deformation mode were analyzed for side members which absorbed most of the collision energy. Variation of CFRP interlaminar numbers is important to increase the energy absorption capability. Therefore we have made a static collapse experiment to research into the difference of absorbed energy and deformation mode between moisture absorbed specimen and non-moisture absorbed.

  • PDF