• Title/Summary/Keyword: 모자형 단면부재

Search Result 24, Processing Time 0.021 seconds

Collapse Characteristics of CFRP Hat Shaped members According to Variation of Interface Numbers under the Hygrothermal Environment (고온.고습 환경 하에서의 계면수 변화에 따른 CFRP모자형 단면 부재의 압궤특성)

  • Yang, Yong-Jun;Cha, Cheon-Seok;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.241-247
    • /
    • 2009
  • It is important to satisfy the requirements and standards for the protections of passengers in a car accident. There are lots of studies on the crushing energy absorption of a structure members in automobiles. We have studied to investigate collapse characteristics and moisture absorption movements of CFRP(Carbon Fiber Reinforced Plastics) hat shaped sectional members when CFRP laminates are under the hygrothermal environment. In particular, the absorbed energy, mean collapse load and deformation mode were analyzed for side members which absorbed most of the collision energy. Variation of CFRP interlaminar numbers is important to increase the energy absorption capability. Therefore we have made a static collapse experiment to research into the difference of absorbed energy and deformation mode between moisture absorbed specimen and non-moisture absorbed.

  • PDF

Axial Collapse Characteristics of Aluminum/Carbon Fiber Reinforced Plastic Composite Thin-Walled Members with Different Section Shapes (단면형상이 다른 Al/CFRP 혼성박육부재의 축압궤특성)

  • Hwang, Woo Chae;Lee, Kil Sung;Cha, Cheon Seok;Kim, Ji Hoon;Ra, Seung Woo;Yang, In Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.959-965
    • /
    • 2014
  • In the present study, we aimed to obtain design data that can be used for the side members of lightweight cars by experimentally examining the types of effects that the changes in the section shape and outermost layer of an aluminum (Al)/carbon fiber reinforced plastic (CFRP) composite structural member have on its collapse characteristics. We have drawn the following conclusions based on the test results: The circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at $0^{\circ}$ was observed to be 52.9 and 49.93 higher than that of the square and hat-shaped members, respectively. In addition, the energy absorption characteristic of the circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at $90^{\circ}$ was observed to be 50.49 and 49.2 higher than that of the square and hat-shaped members, respectively.

Elastic Buckling Analysis of Single Hat Rectangular Tubes (단일 모자형 사각 단면 부재의 탄성좌굴해석)

  • 김윤영;한창운
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1251-1258
    • /
    • 1995
  • An elastic buckling analysis of single hat rectangular tubes is carried out. Based on Bleich's buckling theory for elastically restrained plates, a method to estimate the compliance of the supporting plates for the buckling plate and to compensate the effects of compression force acting on the supporting plates is offered. Necessary assumptions which enable an analytic approach to be used are also given. The present results are compared with the finite element results obtained from ABAQUS.

A Study on Axial Collapse Characteristics of Spot Welded Double-Hat Shaped Section Members by FEM (FEM에 의한 점용접된 이중모자형 단면부재의 축방향 압궤특성에 관한 연구)

  • Cha, Cheon-Seok;Kim, Young-Nam;Yang, In-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.120-126
    • /
    • 2001
  • The widely used spot welded section members of vehicles are structures which absorb most of the energy in a front-end collision. In front-end collision, sufficiently absorbed in the front parts, the impact energy does not reach the passengers. Simultaneously, the frame gets less damaged. This structures have to be very stiff, but collapse progressively to absorb the kinetic energy as expected. In the view of stiffness, the double-hat shaped section member is stiffer than the hat shaped section member. In progress of collapse, the hat shaped section member is collapsing progressively, but the double-hat shaped section member does not due to stiffness. An analysis on the hat shaped section member was previously completed. This paper concerns the collapse characteristic of the double-hat shaped section member. In the program system presented in this study, an explicit finite element code, LS-DYNA3D is adopted for simulating complicate collapse behavior of double hat shaped section members with respect to spot weld pitches. And comparing with the results from the quasi-static and impact experiment, the simulation has been verified.

  • PDF

A Study on the Collapse Characteristics of Hat-shaped Members with Spot Welding under Axial Compression(II) (모자형 단면 점용접부재의 축방향 압궤특성에 관한 연구(II))

  • 차천석;양인영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.195-201
    • /
    • 2000
  • The fundamental spot welded sections of automobiles (hat-shaped and double hat-shaped sections) absorb most of the energy in a front impact collision. The sections of various thickness, shape and weld width on the flange lave been tested on axial impact crush load (Mass 40kg, Velocity 7.19m/sec) using a vertical air pressure crash est device Characteristics of impact collapse have been reviewed and a structure of optimal energy absorbing capacity is suggested.

  • PDF

A Study on Crushing Characteristic of Hatted Section Tube (모자형 단면부재의 압괴특성 연구)

  • 김천욱;한병기;김병삼
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.212-219
    • /
    • 2002
  • In the frontal collision of cars, front parts of cars such as engine rail and side members that are composed of hatted section tubes should absorb most of the collision energy far the passenger compartment not to be deformed. For these reasons the study on the collapse characteristics, maximum crushing load and energy absorption capacity of hatted section tubes are needed. In this study, top hatted section tubes and double hatted section tubes are investigated. The maximum crushing load of hatted section tubes is induced from plastic buckling stress of plates by considering that the hatted section tubes are composed of plates with each different boundary conditions and that its material has a strain hardening effect. On this concept maximum crushing load equations of hatted section tubes are derived and verified by experiments. from the results of experiment, the differences of collapse characteristics between top hatted section tube and double hatted section tube are analysed. And mean crushing loads of hatted section tubes from experiments are compared with other theory.

Energy Absorption Characteristics for Spot Welded Hat-shaped Section Members at Various Velocities (속도변화에 따른 점용접된 모자형단면부재의 에너지흡수 특성)

  • Ki, Sim-Jae;Cha, Cheon-Seok;Yang, In-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.114-120
    • /
    • 2006
  • Front-end side members of vehicles are structures with the greatest energy absorbing capability in a front-end collision of vehicles. This paper was undertaken to analyze the energy absorption characteristics of spot welded hat and double hat-shaped section members under the axial collapse. The experiments were performed with respect to the various collapse velocities. It was expected that para-closed sections would show collapse characteristics which be quite different from those of perfectly closed sections. The collapse velocities were selected as follows: the velocities in the hat-shaped section members were 0.00017m/sec, 0.017m/sec, 4.7m/sec, 6.5m/sec, 6.8m/sec, 7.2m/sec, and 7.3m/sec those in the double hat-shaped section members were 0.00017m/sec, 0.017m/sec, 6.5m/sec, 6.8m/sec, 7.2m/sec 7.3m/sec, and 7.9m/sec. In the program system presented in this study, an explicit finite element code, LS-DYNA3D, is adopted for simulating complicated collapse behavior of the hat and double hat-shaped section members under the same condition of the collapse test. The validity of simulation was confirmed by the comparison between the simulation result and the collapse experiment.

Crushing Test of the Double Hat-shaped Members of Dissimilar Materials by Seining Methods (이종재료의 결합방법에 따른 모자형 단면부재의 충돌실험)

  • Lee Myeong-Han;Park Young-Bae;Kim Heon-Young;Oh Soo-Ik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.129-134
    • /
    • 2005
  • There is a strong industrial demand for the development of light-weight vehicle to improve fuel efficiency and dynamic performance. The effective method of achieving the weight reduction is to use low-density materials such as aluminum and magnesium. In applying these materials to the vehicle, it is often required to join dissimilar materials such as aluminum and steel. However, conventional joining method, namely resistance spot welding cannot be used in joining dissimilar materials. Self·piercing rivet(SPR) and adhesive bonding is a good alternative to resistance spot welding. In this study, the impact test of double hat-shaped member made by resistance spot welding, SPR and adhesive bonding was performed. As a result, various parameters of crashworthiness were analyzed and evaluated. Also, the applicability of SPR and adhesive bonding as an alternative to resistance spot welding was suggested.

Axial Impact Collapse Analysis on Hat-shaped Members by FEM (FEM에 의한 단일모자형 단면부재의 축방향 충격압궤 해석)

  • Cha, Cheon-Seok;Gang, Jong-Yeop;Yang, In-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.129-136
    • /
    • 2000
  • In the frontal collision the spot welded hat-shaped section side member is the fundamental structure for automobiles and has a great amount of absorbing capacity. For this reason LS-DYNA3D has been used for analyzing impact collapse characteristics on hat shaped section member with respect to the valuables; thickness, width ratio and spot weld potch on impact load(7.19m/sec, 1034J). By comparing the results from simulation and the experimental results, the utilization of simulation has been certified.

  • PDF

The Collapse Characteristics of Vehicle Thin-walled Members Coated Damping Material (댐핑재가 도포된 차체 박육부재의 압궤특성)

  • 송상기;박상규;송찬일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.76-81
    • /
    • 2003
  • The purpose of this study is to analyze the collapse characteristics of widely used spot welded section members coated damping material Y1000 and to develop an analysis method for acquiring exact collapse loads and energy absorption ratio. Hat-shaped thin-walled members have the biggest energy absorbing capacity in a front-end collision. The sections were tested on quasi-static and impact loads. Specimens with two type thickness, width ratio and spot weld pitch on the flange have been tested in impact velocities(6.73n0sec and 7.54n1sec) which imitate a real-life car collision. As a result, it was developed the system for acquiring impact energy absorbing characteristics of structure united thin-walled member and damping materials.