• Title/Summary/Keyword: 모자유형

Search Result 26, Processing Time 0.022 seconds

Meaning of Basic Geometry Patterns to Ancient Koreans and Its Classification (고대 한국인이 선호한 기본도형의 의미와 유형)

  • Park, Seon-Hwa;Kim, Ji-Soo;Na, Young-Joo
    • Science of Emotion and Sensibility
    • /
    • v.22 no.2
    • /
    • pp.83-100
    • /
    • 2019
  • The purposes of this study are to identify the meaning of the geometrical patterns preferred by ancient Korean peoples and to classify them into some groups by their similarity. We investigated various patterns found on clothing and relics from GoJoseon to Goguryeo period, and utilized secondary sources such as history articles, Internet materials and photo and analyzed the associations of the varied patterns found in pottery, handicrafts, and clothing with the ancient cultures. We found the letters (ㅇ, ㅁ, and ㅅ of Korean alphabet, Hangul) preferred by ancestors who worshipped nature to identify the significations attached by them to particular patterns. The results confirm the following: first, the circle pattern indicated the sun, moon, stars in the sky, a bronze mirror, and a man's face. Circles and ovals were also observed to represent the individual souls of the clan or community. Second, square patterns symbolized the land and the patterns that signified the wellbeing of family and the country. Oblique rectangles were more frequently used as they represented a double use of the triangle, a shape that implied mystic power. Third, triangle symbolized regeneration, power, and humanity. While the Neolithic Age jade remnants of hair combs appear not to be irrelevant to the process of comb-shaped pottery production of the time, many fine comb-like lines may be found on bronze mirrors. Through its review of the glorious designs inherited from and established by ancient ancestors, the present research endeavor may help in identifying the spirits and traditions of Korean history.

The Original Form and Meaning of the Gilt Bronzed Crown in Naju Bogam-ri Jeongchon Tombs (NBJ) (나주 복암리 정촌고분 금동관의 원형과 의미)

  • Yi, Gunryoung
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.3
    • /
    • pp.202-223
    • /
    • 2020
  • This purpose of this article is to identify the original form of the gilt-bronze ornamental pieces unearthed from the east part of the third wooden coffin in the Naju Bogam-ri Jeongchon (NBJ) tombs. The gilt-bronze ornamental pieces were all small, measuring less than 3cm in size and about 0.2cm in thickness, and only 19 or more small pieces were identified. In each piece of gilt decoration, a circular perforation, convex pattern, leaf-shaped spangle (瓔珞), 2 small holes for attaching spangles and gilt-bronze thread, 2 small holes for unknown purposes, and a continuous dot pattern of about 0.05 cm can be observed. As a result, it was judged that the gilt-bronze pieces excavated from the NBJ No. 1 chamber were part of the Headband Crown. Therefore, type 1 and type 3 of the gilt-bronze pieces were determined to be part of the Headband, and type 2 to be part of the Vertical Ornaments. Based on previous results, two types of restoration were proposed for NBJ No. 1 tomb gilt-bronze ornaments. In the first restoration proposal, there are wave-shaped dot patterns on the top and bottom of the crown, and the middle decoration is a spangle, circular perforation and spangle and a convex-pattern. In the second restoration plan, one row of convex patterns was added among the decorations in the middle of the first. The same type of vertical ornament was found in the Sochang (小倉) collection crown, but the overall structure and shape of the crown were completely different. On the other hand, the use of small holes of unknown use, as seen in the crown, was presumed to represent holes for fixing to a cap of organic matter. The restored NBJ No. 1 tomb gilt-bronze crown is characterized by circular punching, which makes it difficult to find an analogy in the other Three Kingdoms-period crowns. Unlike the existing halls in Gaya, Mahan, and Baekje, each district has a unique shape and decoration. The gilt-bronze crown excavated from NBJ No. 1 tomb is thought to reflect these characteristics.

Analysis about Flexural Strength of Steel Plate-Concrete Composite Beam using Folded Steel Plate (Cap) as Shear Connector (절곡 강판(Cap)을 전단연결재로 사용한 강판-콘크리트 합성보의 휨강도 분석)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.481-492
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and shear connector to combine two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, the SPC beam was composed of folding steel plates and concrete, without a headed stud. The folding steel plate was assembled by a high strength bolt instead of welding. To improve the workability in a field construction, a hat-shaped cap was attached to the junction with a slab. Monotonic load testing under two points was conducted under displacement control mode to analyze the flexural strength of the SPC beam using a cap as the shear connector. Five specimens with shear connector types, protrusion length, and different thickness of steel plates were constructed and tested. The experimental results were analyzed through the relationship between the shear strength ratio and flexural strength in KBC 2009. The test results showed a shear strength ratio of more than 40 %. In the case of using a cap-like specimen as the shear connector, the flexural strength was 70% of the value calculated as a fully composite beam. In addition, the cap showed a smaller shear strength than the stud, but the cap served as a shear connection. When the thickness of the steel plate was taken as a variable, the steel plate exhibited a bending strength of approximately 70% compared to a fully formed steel plate, and exhibited similar deformation performance. Local buckling occurred due to incomplete composite behavior, but local buckling occurred at a 5% higher strength for a relatively thick steel plate. The buckling width also decreased by 15%.

Geochemical Occurrence of Uranium and Radon-222 in Groundwater at Test Borehole Site in the Daejeon area (대전지역 시험용 시추공 지하수내 우라늄 및 라돈-222의 지화학적 산출특성)

  • Jeong, Chan Ho;Ryu, Kun Seok;Kim, Moon Su;Kim, Tae Sung;Han, Jin Suk;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.23 no.2
    • /
    • pp.171-186
    • /
    • 2013
  • A drilling project was undertaken to characterize the geochemical relationship and the occurrence of radioactive materials at a test site among public-use groundwaters previously known to have high occurrence of uranium and radon-222 in the Daejeon area. A borehole (121 m deep) was drilled and core rocks mainly consist of two-mica granite, and associated with pegmatite and dykes of intermediate composition. The groundwater samples collected at six different depths in the borehole by a double-packed system showed the pH values ranging from neutral to alkaline (7.10-9.3), and electrical conductivity ranging from 263 to 443 ${\mu}S/cm$. The chemical composition of the borehole groundwaters was of the $Ca-HCO_3(SO_4+Cl)$ type. The uranium and Rn-222 contents in the groundwater were 109-1,020 ppb and 9,190-32,800 pCi/L, respectively. These levels exceed the regulation guidelines of US EPA. The zone of the highest groundwater uranium content occurred at depths of 45 to 55m. The groundwater chemistry in this zone (alkaline, oxidated, and high in bicarbonate) is favorable for the dissolution of uranium into groundwater. The dominant uranium complex in groundwater is likely to be $(UO_2CO_3)^0$ or $(UO_2HCO_3)^+$. Radon-222 content in groundwater shows an increasing trend with depth. The uranium and thorium contents in the core were 0.372-47.42 ppm and 0.388-11.22 ppm, respectively. These levels are higher values than those previously been reported in Korea. Microscopic observations and electron microprobe analysis(EPMA) revealed that the minerals containing U and Th are monazite, apatite, epidote, and feldspar. U and Th in these minerals are likely to substitute for major elements in crystal lattice.

A Study on Heavy Metal Contamination and Risk Assessment of Seaweed and Seaweed Products (해조류와 해조류가공품의 중금속 오염실태 및 위해성평가)

  • Lee, Ji-Yeon;Lee, Myung-Jin;Jeong, Il-Hyung;Cho, Young-Sun;Sung, Jin-Hee;Baek, Eun-Jin;Lee, Eun-Bin;Kim, Hye-Jin;Yoon, Mi-Hye
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.5
    • /
    • pp.447-453
    • /
    • 2019
  • In this study, the contamination of 4 types of heavy metals (lead, cadmium, arsenic, and mercury) was monitored in 80 seaweeds and their processed products, and a food safety assessment was also carried out for these heavy metals. Lead, cadmium and arsenic were analyzed by ICP-OES and mercury was analyzed by mercury analyzer. The detection ranges of heavy metals were found as follows: Pb (N.D-0.802 mg/kg), Cd (N.D-0.759 mg/kg), As (0.134-17.296 mg/kg), and Hg (0.0005-0.0331 mg/kg). Pb and Hg showed no significant differences among seaweeds whereas Cd and As were significantly higher in the species hizikia fusiforme (P<0.05). Food safety assessment from seaweed intake was measured by PTWI (Provisional Tolerable Weekly Intake), PTMI (Provisional Tolerable Monthly Intake), and MADL (Maximum Allowable Daily Body Load) as set by JECFA (Joint FAO/WHO Expert Committee on Food Additives). Pb and Hg were 0.197%, 0.036% of PTWI respectively, while Cd was 1.877% of PTMI and As was 0.619% of MADL. Therefore, it was found that heavy metal levels of seaweed were low and was considered to be safe for consumption.

Name Review, and Production Method of Pyeongjeongmo, Housed by the National Palace Museum of Korea (국립고궁박물관 소장 평정모(平頂帽)의 명칭 검토와 제작방법)

  • Lee, Eun-Joo;Jin, Duk-Soon;Lee, Jeong-Min
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.2
    • /
    • pp.4-21
    • /
    • 2018
  • This paper reviewed the legitimacy of the name of those sixteen pieces of hat artifacts known in Korean as pyeongjeongmo and currently housed by the National Palace Museum. This was undertaken in order to rectify the error of calling them pyeongjeongmo. Also, the paper suggested pyeongjeongmo's production method to apply representation of the artifacts or production of Joseon officials' hats as representation of ritual costumes in the royal court. The name pyeongjeongmo originated from pyeongjeonggeon. Gyeongguk Daejeon recorded that noksas wore yugak-pyeongjeonggeon and seoris wore mugak-pyeongjeonggeon, but the pyeongjeongmo artifacts housed in the National Palace Museum have been found irrelevant to those pyeongjeonggeons put on by both noksas and seoris. Rather, they has been confirmed as corresponding to dugeon or jogeon worn by byeolgams or suboks who served at the palace of the crown prince or princess. Through the investigation of the artifacts, the researchers could find out the tailoring and sewing methods, the finished look, and the folding manner of pyeongjeonggeon. Although the structure of pyeongjeonggeon was generally consistent, the frontal look was slightly different depending on the folding manner, resulting in three distinguished types of pyeongjeonggeon. Regardless, the pyeongjeongmo was made with one piece of fabric by a flat tailoring and folding method to create a three-dimensional hat. The finished shape appeared low in the front and high in the back side structure. The head girth was 55~59 cm, and the height was 19.4~21.5 cm. To make it with one piece of fabric, the head girth part was tailored in the same direction as the strands. Based on the artifact Changdeok 23820, this paper has also suggested a finished reproduction through the processes of preparing the materials, mounting, making the center ornaments, sewing and folding. The tailoring was completed with black silk fabric which was cut in a unique shape designed in advance, and hemp fabric which was mounted to the former. The top part of the head was finished with black threads, and the center line at the back was fixed with decolored cotton threads by blanket stitches with 3.5~4 cm intervals. Bamboo strands were inserted in the inside of the front-folded part, which then was fixed by patterned stitches with white cotton thread. At the back, a small bamboo clasp was attached so that one can lock it to the headband and prevent it from falling off.