• Title/Summary/Keyword: 모의치료기

Search Result 80, Processing Time 0.025 seconds

Acceptance Test and Quality Control of Radiotherapy Treatment Simulator (의료용 모의치료기의 품질관리에 관한 연구)

  • 신동호;박성용;신동오;최진호;김유현;권수일
    • Progress in Medical Physics
    • /
    • v.13 no.2
    • /
    • pp.90-97
    • /
    • 2002
  • The simulator which has a identical geometry with radiotherapy equipments, is a essential equipment to accomplish optimized radiotherapy plan through simulation by using diagnostic low energy X-ray. A Radiotherapy simulator has a combined technology from the therapeutic and diagnostic radiology and needs a periodical test for mechanical and optical properties, X-ray generator, image intensifier of simulator to keep the proper maintenance and radiation safety. Hence, tests were done and classified as i) mechanical and optical parameter for the gantry, collimator, and couch ii) key performance of the X-ray generator such as a kVp, mAs, and timer iii) performance of the image intensifier such as a resolution and contrast for three kinds of simulator, common use in clinic. The above result of tests will be applied to the acceptance test and periodical quality assurance procedure.

  • PDF

CT Simulation Technique for Craniospinal Irradiation in Supine Position (전산화단층촬영모의치료장치를 이용한 배와위 두개척수 방사선치료 계획)

  • Lee, Suk;Kim, Yong-Bae;Kwon, Soo-Il;Chu, Sung-Sil;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.165-171
    • /
    • 2002
  • Purpose : In order to perform craniospinal irradiation (CSI) in the supine position on patients who are unable to lie in the prone position, a new simulation technique using a CT simulator was developed and its availability was evaluated. Materials and Method : A CT simulator and a 3-D conformal treatment planning system were used to develop CSI in the supine position. The head and neck were immobilized with a thermoplastic mask in the supine position and the entire body was immobilized with a Vac-Loc. A volumetrie image was then obtained using the CT simulator. In order to improve the reproducibility of the patients' setup, datum lines and points were marked on the head and the body. Virtual fluoroscopy was peformed with the removal of visual obstacles such as the treatment table or the immobilization devices. After the virtual simulation, the treatment isocenters of each field were marked on the body and the immobilization devices at the conventional simulation room. Each treatment field was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR)/digitally composite radiography (DCR) images from the virtual simulation. The port verification films from the first treatment were also compared with the DRR/DCR images for a geometrical verification. Results : CSI in the supine position was successfully peformed in 9 patients. It required less than 20 minutes to construct the immobilization device and to obtain the whole body volumetric images. This made it possible to not only reduce the patients' inconvenience, but also to eliminate the position change variables during the long conventional simulation process. In addition, by obtaining the CT volumetric image, critical organs, such as the eyeballs and spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. The differences between the DRRs and the portal films were less than 3 mm in the vertebral contour. Conclusion : CSI in the supine position is feasible in patients who cannot lie on prone position, such as pediatric patienta under the age of 4 years, patients with a poor general condition, or patients with a tracheostomy.

Efficiency Evaluation of CT Simulator QA Phantom (전산화 단층촬영 모의치료기 정도관리 팬텀의 유용성 평가)

  • Hwang, Se-Ha;Min, Je-Sun;Lee, Jae-Hee;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.2
    • /
    • pp.89-95
    • /
    • 2009
  • Purpose: The purpose is to evaluate efficiency of the CT simulator QA phantom manufactured for daily QA. Materials and Methods: We made holes ($1{\times}100{\times}1\;mm$) to verify accuracy between image and real measurement in polystyrene phantom and made 1 mm holes to verify table movement accuracy at superior and inferior 100 mm to the center of the phantom and inserted radiopacity material. To evaluate laser alignment, we made cross mark on the right and left side at phantom and to evaluate CT number accuracy we made 3 cylindrical holes and inserted equivalence material of bone, water, air in them. After CT scanning the phantom, We evaluated accuracy between image and real measurement, accuracy of table movement, laser, and CT number using exposed image. Results: It was measured that the accuracy between image and real measurement was ${\pm}0.3\;mm$, table movement accuracy was ${\pm}0.3\;mm$, laser accuracy was ${\pm}0.5\;mm$ from 7th January to 7th March in 2008 as within the reference point ${\pm}1\;mm$. In the CT number accuracy of bone was ${\pm}10\;HU$, air was ${\pm}5\;HU$, water was ${\pm}5\;HU$ as within the reference point is ${\pm}10\;HU$. Conclusion: We was able to perform CT simulator QA and laser equipment QA more conveniently and fast using manufactured phantom at the same time. We will be able to make more accurate treatment plan that added to QA procedures using images at previous daily QA.

  • PDF

The Usefulness of Integrated PET/CT Simulator for Non-Small Cell Lung Cancer Using the F-18 Fluoro-2-deoxyglucose (FDG) (포도당 유도체 불소화합물(FDG)을 이용한 비소세포폐암의 Integrated PET/CT 전산화 모의치료기에 대한 유용성 평가)

  • Na, Jong Eok;Suh, Jeong Nam;Kim, Jin Soo;Kim, Dae Seob;Hong, Dong Ki;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • Purpose: To evaluate the usefulness of Integrated PET/CT and compare the gloss tumor volume (GTV) identified on CT, PET, PET/CT to that obtained from fluorodeoxyglucose (FDG). Materials and Methods: This experimental study was obtained using GE Discovery 690 (General Electric Healthcare, Milwaukee, MI, USA) PET/CT simulator with Gammex Laser System for five non-small cell lung cancer (NSCLC) patients. In order to increase the reproducibility of the patient setup, We have to fixed to patients using the Extended Wing Board. GTV delineation was painted using the EclipseTM ver.10 contouring program for CT, PET, PET/CT images. And then, We were to compare the changes in the GTV. Results: These results are drawn from 5 patients who have atelectasis or pneumonitis. Compared to CT defined GTV, PET was decreased by 10.5%, 11.8% and increased by 67.9%, 220%, 19.4%. PET/CT was decreased by 7.7%, 6.7%, 28% and increased by 232%, 24%. Conclusion: We were able to determine the usefulness of PET/CT simulator for NSCLC. PET/CT simulator in radiation therapy is useful to define the target volume and It is possible to delineate Objective and accurate target volume. It seems to be applicable to other areas in the near future.

  • PDF

Evaluation and Comparison of Myocardial Perfusion Defects in Patients with Early Breast Cancer Subjected to Different Radiation Simulation Techniques (조기유방암 환자에서 방사선 모의치료 방법의 차이에 따른 심근관류결손의 비교 평가)

  • Nam, Ji-Ho;Ki, Yong-Kan;Kim, Dong-Won;Kim, Won-Taek
    • Radiation Oncology Journal
    • /
    • v.25 no.1
    • /
    • pp.26-33
    • /
    • 2007
  • [ $\underline{Purpose}$ ]: The aim of this study is to evaluate and compare the incidence and aspects of myocardial perfusion defects in patients who were subjected to either two-dimensional or three-dimensional simulation techniques for early left-sided breast cancer. The myocardial perfusion defects were determined from using single photon emitted computerized tomography (SPECT) myocardial perfusion images. $\underline{Materials\;and\;Methods}$: Between January 2002 and August 2003, 32 patients were enrolled in this study. The patients were diagnosed as having early (AJCC stage T1-T2N0M0) left-sided breast cancer and were treated with tangential irradiation after breast-conserving surgery and systemic chemotherapy. The patients were divided into two groups according to the type of simulation received: two-dimensional simulation using an X-ray fluoroscope simulator or three-dimensional simulation with a CT simulator. All patients underwent technetium-99m-sestamibi gated perfusion SPECT at least 3 years after radiotherapy. The incidence and area of myocardial perfusion defects were evaluated and were compared in the two groups, and at the same time left ventricular ejection fraction and cardiac wall motion were also analyzed. The cardiac volume included in the radiation fields was calculated and evaluated to check for a correlation between the amount of irradiated cardiac volume and aspects of myocardial perfusion defects. $\underline{Results}$: A myocardial perfusion defect was detected in 11 of 32 patients (34.4%). There were 7 (46.7%) perfusion defect cases in 15 patients who underwent the two-dimensional simulation technique and 4 (23.5%) patients with perfusion defects in the three-dimensional simulation group (p=0.0312). In 10 of 11 patients who had myocardial perfusion changes, the perfusion defects were observed in the cardiac apex. The left ventricular ejection fraction was within the normal range and cardiac wall motion was normal in all patients. The irradiated cardiac volume of patients in the three-dimensional simulation group was less than that of patients who received the two-dimensional simulation technique, but there was no statistical significance as compared to the incidence of perfusion defects. $\underline{Conclusion}$: Radiotherapy with a CT simulator (three-dimensional simulation technique) for early left-sided breast cancer may reduce the size of the irradiated cardiac volume and the incidence of myocardial perfusion defects. Further investigation and a longer follow-up duration are needed to analyze the relationship between myocardial perfusion defects and clinical ischemic heart disease.

Assessment of Dose Distribution using the MIRD Phantom at Uterine Cervix and Surrounding Organs in High Doserate Brachytheraphy (자궁주위 방사선 근접치료시 MIRD 팬텀을 이용한 주변장기의 피폭환경평가)

  • Lee, Yun-Jong;Nho, Young-Chang;Lee, Jai-Ki
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.4
    • /
    • pp.387-391
    • /
    • 2006
  • Computational and experimental dosimetry of Henschke applicator with respect to high dose rate brachytherapy using the MIRD phantom and a remote control afterloader were performed. A comparison of computational dosimetry was made between the simulated Monte Carlo dosimetry and GAMMADOT brachytherapy Planning system's dosimetry. Dose measurements was performed using ion chamber in a water phantom. Dose rates are calculated using Monte Carlo code MCNP4B and the GAMMADOT. Thecomputational models include the detailed geometry of Ir-192 source, tandem tube, and shielded ovoids for accurate estimation. And transit dose delivered during source extension to and retraction from a given dwell position was estimated by Monte Carlo simulations. Point doses at ICRU bladder/rectal pointswhich have been recommened by ICRU 38 was assessed. Calculated and measured dose distribution data agreed within 4% each other. The shielding effect of ovoids leads to 19% and 20% dose reduction at bladder surface and rectal points.

A Study on the Availability of the On-Board Imager(OBI) and Cone-Beam CT(CBCT) in the Verification of Patient Set-up (온보드 영상장치(On-Board Imager) 및 콘빔CT(CBCT)를 이용한 환자 자세 검증의 유용성에 대한 연구)

  • Bak, Jino;Park, Sung-Ho;Park, Suk-Won
    • Radiation Oncology Journal
    • /
    • v.26 no.2
    • /
    • pp.118-125
    • /
    • 2008
  • Purpose: On-line image guided radiation therapy(on-line IGRT) and(kV X-ray images or cone beam CT images) were obtained by an on-board imager(OBI) and cone beam CT(CBCT), respectively. The images were then compared with simulated images to evaluate the patient's setup and correct for deviations. The setup deviations between the simulated images(kV or CBCT images), were computed from 2D/2D match or 3D/3D match programs, respectively. We then investigated the correctness of the calculated deviations. Materials and Methods: After the simulation and treatment planning for the RANDO phantom, the phantom was positioned on the treatment table. The phantom setup process was performed with side wall lasers which standardized treatment setup of the phantom with the simulated images, after the establishment of tolerance limits for laser line thickness. After a known translation or rotation angle was applied to the phantom, the kV X-ray images and CBCT images were obtained. Next, 2D/2D match and 3D/3D match with simulation CT images were taken. Lastly, the results were analyzed for accuracy of positional correction. Results: In the case of the 2D/2D match using kV X-ray and simulation images, a setup correction within $0.06^{\circ}$ for rotation only, 1.8 mm for translation only, and 2.1 mm and $0.3^{\circ}$ for both rotation and translation, respectively, was possible. As for the 3D/3D match using CBCT images, a correction within $0.03^{\circ}$ for rotation only, 0.16 mm for translation only, and 1.5 mm for translation and $0.0^{\circ}$ for rotation, respectively, was possible. Conclusion: The use of OBI or CBCT for the on-line IGRT provides the ability to exactly reproduce the simulated images in the setup of a patient in the treatment room. The fast detection and correction of a patient's positional error is possible in two dimensions via kV X-ray images from OBI and in three dimensions via CBCT with a higher accuracy. Consequently, the on-line IGRT represents a promising and reliable treatment procedure.

A Study on a Comparative Analysis of 2D and 3D Planning Using CT Simulator for Transbronchial Brachytherapy (전산화단층모의치료기를 이용한 경기관지 근접치료환자의 치료계획에 관한 고찰)

  • Seo, Dong Rin;Kim, Dae Sup;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.69-75
    • /
    • 2013
  • Purpose: Transbronchial brachytherapy used in the two-dimensional treatment planning difficult to identify the location of the tumor in the affected area to determine the process analysis. In this study, we have done a comparative analysis for the patient's treatment planning using a CT simulator. Materials and Methods: The analysis was performed by the patients who visited the hospital to June 2012. The patient carried out CT-image by CT simulator, and we were plan to compare with a two-dimensional and threedimensional treatment planning using a Oncentra Brachy planning system (Nucletron, Netherland). Results: The location of the catheter was confirmed the each time on a treatment planning for fractionated transbronchial brachytherapy. GTV volumes were $3.5cm^3$ and $3.3cm^3$. Also easy to determine the dose distribution of the tumor, the errors of a dose delivery were confirmed dose distribution of the prescibed dose for GTV. In the first treatment was 92% and the second was 88%. Conclusion: In order to compensate for the problem through a two-dimensional treatment planning, it is necessary to be tested process for the accurate identification and analysis of the treatment volume and dose distribution. Quantitatively determine the dose delivery error process that is reflected to the treatment planning is required.

  • PDF

A Study on the Effectiveness of the Manufacture of Compensator and Setup Position for Total Body Irradiation Using Computed Tomography-simulator's Images (전산화 단층 모의치료기(Computed Tomography Simulator)의 영상을 이용한 TBI(Total Body Irradiation) 자세 잡이 및 보상체 제작의 유용성에 관한 고찰)

  • Lee Woo-Suk;Park Seong-Ho;Yun In-Ha;Back Geum-Mun;Kim Jeong-Man;Kim Dae-Sup
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.147-153
    • /
    • 2005
  • Purpose : We should use a computed tomography-simulator for the body measure and compensator manufacture process was practiced with TBI's positioning in process and to estimate the availability.,Materials and Methods : Patient took position that lied down. and got picture through computed tomography-simulator. This picture transmitted to Somavision and measured about body measure point on the picture. Measurement was done with skin, and used the image to use measure the image about lungs. We decided thickness of compensator through value that was measured by the image. Also, We decided and confirmed position of compensator through image. Finally, We measured dosage with TLD in the treatment department.,Results : About thickness at body measure point. we could find difference of $1{\sim}2$ cm relationship general measure and image measure. General measure and image measure of body length was seen difference of $3{\sim}4$ cm. Also, we could paint first drawing of compensator through the image. The value of dose measurement used TLD on head, neck, axilla, chest(lungs inclusion), knee region were measured by $92{\sim}98%$ and abdomen, pelvis, inquinal region, feet region were measured by $102{\sim}109%$.,Conclusion : It was useful for TBI's positioning to use an image of computed tomography-simulator in the process. There was not that is difference of body thickness measure point, but measure about length was achieved definitely. Like this, manufacture of various compensator that consider body density if use image is available. Positioning of compensator could be done exactly. and produce easily without shape of compensator is courted Positioning in the treatment department could shortened overall $15\{sim}20$ minute time. and reduce compensator manufacture time about 15 minutes.

  • PDF

Calculation of Neutron Energy Distribution from the Components of Proton Therapy Accelerator Using MCNPX (MCNPX를 이용한 양성자 치료기의 구성품에서 발생하는 중성자 에너지 분포계산)

  • Bae, Sang-Il;Shin, Sang-Hwa
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.917-924
    • /
    • 2019
  • The passive scattering system nozzle of the proton therapy accelerator was simulated to evaluate the neutrons generated by each component in each nozzle by energy. The Monte Carlo N-Particle code was used to implement spread out Bragg peak with proton energy 220 MeV, reach 20 cm, and 6 cm length used in the treatment environment. Among the proton accelerator components, neutrons were the highest in scatterers, and the neutron flux decreased as it moved away from the central flux of the proton. This study can be used as a basic data for the evaluation of the radiation necessary for the maintenance and dismantling of proton accelerators.