• Title/Summary/Keyword: 모암변질

Search Result 84, Processing Time 0.03 seconds

Wallrock Alteration and Primary Dispersion of Elements in the Vicinity of the Mugeug Gold-bearing Quartz Veins (무극 함금석영맥광상 주변모암에서의 모암변질과 원소들의 일차분산)

  • Hwang, In Ho;Chon, Hyo Taek
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.387-396
    • /
    • 1994
  • Mineralogical and geochemical studies on gold-bearing quartz veins and wallrock from the Mugeug mine were carried out in order to investigate the variation of mineralogical composition and the geochemical behavior of elements with distance from the gold-bearing quartz veins. Gold-bearing quartz veins occur in early Cretaceous medium- to coarse-grained biotite granite. The unaltered wallrock is composed mainly of quartz, plagioclase, orthoclase, microcline, biotite and hornblende with accessory minerals of sphene and apatite. Mineralogical changes in altered wallrock around the gold-bearing quartz veins were observed as follows; 1) biotite and hornblende altered into chlorite, and next to sericite, 2) plagioclase, orthoclase and microcline altered into sericite, and 3) calcite and quartz introduced into wallrock. Contents of $K_2O$, Rb, Cs, Au, As and Sb in altered wallrock increase, whereas those of $Na_2O$, CaO, Ba, and Sr decrease with proximity to the gold-bearing quartz veins. The loss on ignition also increases with the increase of alteration mineral. The width of primary dispersion increases in order $Au=SiO_2<As=Cs=Rb<K_2O=Sb$ and $MnO<Na_2O=CaO=Ba<Sr$. The sericitization index, $K_2O/(K_2O+Na_2O)$, is an important indicator to interpret the degree of alteration at the Mugeug mine, which is more than 0.8 in strongly and moderately altered granite, 0.5~0.8 in wea altered granite, and less than 0.5 in unaltered granite. Alteration indices for major and trace elements, and the ratio of Rb/Sr are also useful to discriminate alteration zones.

  • PDF

Formation Processes of Fault Gouges and their K-Ar Ages along the Dongnae Fault (동래단층 지역 단층비지의 생성과정과 K-Ar 연령)

  • 장태우;추창오
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.175-188
    • /
    • 1998
  • This paper describes the internal structures and K-Ar ages of fault gouges collected from the Dongnae fault zone. This fault zone is internally zoned and occurs in the multiple fault cores. A fault core consists of thin gouge and narrow cataclastic zones that are bounded by a much thicker damage zone. Intensity of deformation and alteration increases from damage zone through cataclastic zone to gouge zone. It is thought that cataclasis of brittle deformation was the dominant strain-accomodation mechanism in the early stage of deformation to form the gouge zone and that crushed materials in the regions of maximum localization of fault slip subsequently moved by cataclastic flow. Deformation mechanism drastically changed from brittle processes to fluid-assisted flow along the gouge zone as the high porosity and permeability of pulverzied materials during faulting facilitated the influx of the hydrothermal fluids. Subsequently, the fluids reacted with gouge materials to form clay minerals. Fracturing and alteration could have repeatedly taken place in the gouge zone by elevated fluid pressures generated from the reduction of pore volume due to the formation of clay minerals and precipitation of other materials. XRD analysis revealed that the most common clay minerals of the gouge zones are illite and smectite with minor zeolite and kaolinite. Most of illites are composed of 1Md polytype, indicating the products of hydrothermal alteration. The major activities of the Dongnae fault can be divided into two periods based upon K-Ar age data of the fault gouges : 51.4∼57.5Ma and 40.3∼43.6Ma. Judging from the enviromental condition of clay mineral formation, it is inferred that the hydrothermal alteration of older period occured at higher temperature than that of younger period.

  • PDF

Study on Constituent Minerals and Illitization Characteristics of Yeongdong Illite Ore (영동 일라이트 광체의 구성광물 및 일라이트화 특성 연구)

  • EunJi Baek;Yu Na Lee;Byeongyong Yu;Dongbok Shin;Youngseuk Keehm;Sun Young Park;Hyun Na Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.41-54
    • /
    • 2023
  • Illite is a common mineral that forms readily from feldspar and mica via hydrothermal alteration and exhibits various characteristics depending on the degree of hydrothermal alteration. To ensure continued mining of high-quality illite ore, it is crucial to understand the illitization. Thus, this study collected ores from two illite ore deposit and their surrounding alteration zones in Yeongdong-gun, Chungcheongbuk-do, a significant source of illite in the Republic of Korea, to determine the constituent mineral contents and textural characteristics. Polarized light microscopy analyses revealed that the illite ore deposit were highly illitized with little remaining textural characteristics of the parent mica schist, and only some quartz was present. The ore zone contained illite, muscovite, quartz, and feldspar, with illitization primarily occurring around feldspar and quartz. X-ray diffraction analyses identified that the content of illite/muscovite was approximately 50-75 wt.%, with a maximum of 75 wt.%. Additionally, X-ray fluorescence analyses indicated a linear increase in K2O content with increasing illite content, showing the highest correlation among the major components analyzed. It is suggested that the illite in the Yeongdong area results from feldspar and quartz alteration by hydrothermal fluids along the fault, with illitization of feldspar occurring before that of quartz. The results of this study are expected to contribute to the development of high-quality illite ore deposit in Yeongdong, Chungcheongbuk-do.

Geochemistry of tourmalines in the Ilgwang Cu-W breccia-pipe deposit, Southeastern Gyeongsang Basin (경상남도 일광의 각력파이프형 구리(Cu)광상에서 산출되는 전기석의 지구화학)

  • 양경희;장주연
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.259-270
    • /
    • 2002
  • A small granodiorite-quartz monzonitic stock containing sericitic and propylitic alteration assemblages hosts a Cu-W breccia-pipe deposit in the southeastern Cyeongsang basin. The mineralized breccia-pipe contains angular to subangular brecciated fragments of granitic rocks showing clast-supported textures. An assemblage of quartz, tourmalines, sulfide minerals (mainly chalcopyrite, arsenopyrite and pyrrhotite) and calcite was precipitated as a hydrothermal cement between the brecciated fragments. A tourmaline aureole surrounds the breccia pipe. Extensive tourmalinization of the granitic rocks near and within the pipe and no tourmalinization in the sedimentary and volcanic rocks. The tourmalines are marked by Fe-rich, black charcoal-like schorl (80 mol% schorl relative) nearer the schorl-dravite solid solution. The chemical changes in the hydrothermal fluid are reflected by variations in compositional Boning from cores to rims. They generally contain cores with low values of Fe/(Fe+Mg) and high values of Na/(Na+ca) relative to rims. This is because of an increase Fe and Ca contents toward rims. The main trend of these variations is a combination of the exchange vectors Ca(Fe, Mg) $(NaAl)_{- }$ $_1$ and $Fe^{3}^{+}$ $Al_{[-10]}$ $_1$ It is thought that boiling causes the loss of $H_2$ into the vapor phase resulting in the oxidation of Fe in the aqueous phase. pH of the melt would be one of important controlling factors for the tourmaline stability. The tourmalines could be precipitated when the system evolved to the acidic hydrothermal regime as most hydrothermal brines and acidic gases exsolved from the magma. The Ilgwang tourmaline crystallization is products of hypogene orthomagmatic hydrothermal processes that were strongly pipe-controlled.

Geochemical Aspects of Groundwater in Granite Area and the Origin of Fluoride with Emphasis on the Water-Rock Interaction (화강암지역 지하수 수질의 특징과 불소원인에 관한 물-암석반응 연구)

  • Choo, Chang-Oh;Kim, Jong-Tae;Chung, Il-Moon;Kim, Nam-Won;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.103-115
    • /
    • 2008
  • The purposes of this study are to understand characteristic water-rock interaction mechanisms of groundwater in the granite area of Geochang and Hapcheon areas, Gyeongnam-do and to clarify the origin of fluoride. The possible water-rock interaction process and the source of fluorine were studied using water chemistry, rock chemistry, mineralogy by XRD, and microtexture analysis by backscattered electron image of the electron microprobe. No clear relationships between F and hardness was found. But the fluorine content increases to some extent with pH and well depth. Preferential alteration due to water-rock interaction took place along edges or cleavage, or margins of biotite. Because biotite is highly subject to alteration in granite aquifer, fluorine in groundwater is originated from the leaching of biotite.

Geochemical Variation of Hwangsan Volcanic Complex by Large Hydrothermal Alteration (대규모 열수변질작용에 따른 황산 화산암복합체의 지구화학적 변화특성)

  • Kim, Eui-Jun;Hong, Young-Kook;Chi, Se-Jung
    • Economic and Environmental Geology
    • /
    • v.44 no.2
    • /
    • pp.95-107
    • /
    • 2011
  • The Hwangsan volcanic rocks, hosting the Moisan epithermal Au-Ag deposit arc widely distributed throughout the Seongsan district, and associated with large hydrothermal alteration. They were analyzed as the Moisan and around voleanic rocks, and most of them show dacitic to rhyolitic compositions. Hydrothermal alteration related to epithermal system causes the host rocks to show the geochemical variation due to high mobility of alkali elements. These features can be applied for quantitative estimates of alteration intensity. Alteration intensity of volcanic rocks from the Moisan ranges from subtle to intense, based on AI vs. $Na_2O$ diagram. The pattern that ($CaO+Na_2O$) content decrease with increasing $K_2O$ content results from sericitic alteration, in which hydrothermal fluids continually provide $K^+$ into country rocks but remove $Ca^{2+}$ and $Na^{2+}$ of feldspars within country rocks. The decrease of ($CaO+Na_2O$) with decreasing $K_2O$ in some samples from the Moisan may be caused by advanced argillic alteration that all alkali elements are entirely removed from country rocks by acid hydrothermal fluids. Two alteration trends, based on Al and CCPI alteration indices suggest both sericitic alterations of feldsaprs to illite and sericite+chlorite$^{\circ}{\ae}$pyritc alteration of high Mg and Fe activities. Trace and Rare Earth Elements patterns show the similar geochemical variation related to hydrothermal alteration. Of LIL elements, strong depletion of $Sr^{2+}$, substituting for $Ca^{2+}$ in feldspars, appears to be resulted from removal of $Ca^{2+}$, during replacement of feldspars to alumino-silicates or phyllo silicates minerals by hydrothermal fluids. Relatively low total REEs contents (Moisan: 119-182 ppm; Seongsan: 111-209 ppm) and gently negative slopes suggest that significant mobility of LREEs appear to occur during hydrothermal alteration.

Occurrence and Chemical Composition of Ti-bearing Minerals from Drilling Core (No.04-1) at Gubong Au-Ag Deposit Area, Republic of Korea (구봉 금-은 광상일대 시추코아(04-1)에서 산출되는 함 티타늄 광물들의 산상과 화학조성)

  • Bong Chul Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.3
    • /
    • pp.185-197
    • /
    • 2023
  • The Gubong Au-Ag deposit consists of eight lens-shaped quartz veins. These veins have filled fractures along fault zones within Precambrian metasedimentary rock. This has been one of the largest deposits in Korea, and is geologically a mix of orogenic-type and intrusion-related types. Korea Mining Promotion Corporation drilled into a quartz vein (referred to as the No. 6 vein) with a width of 0.9 m and a grade of 27.9 g/t Au at a depth of -728 ML by drilling (No. 90-12) in the southern site of the deposit, To further investigate the potential redevelopment of the No. 6 vein, another drilling (No. 04-1) was carried out in 2004. In 2004, samples (wallrock, wallrock alteration and quartz vein) were collected from the No. 04-1 drilling core site to study the occurrence and chemical composition of Ti-bearing minerals (ilmenite, rutile). Rutile from mineralized zone at a depth of -275 ML occur minerals including K-feldspar, biotite, quartz, calcite, chlorite, pyrite in wallrock alteration zone. Ilmenite and rutile from ore vein (No. 6 vein) at a depth of -779 ML occur minerals including white mica, chlorite, apatite, zircon, quartz, calcite, pyrrhotite, pyrite in wallrock alteration zone and quartz vein. Based on mineral assemblage, rutile was formed by hydrothermal alteration (chloritization) of Ti-rich biotite in the wallrock. Chemical composition of ilmenite has maximum values of 0.09 wt.% (HfO2), 0.39 wt.% (V2O3) and 0.54 wt.% (BaO). Comparing the chemical composition of rutile at a depth -275 ML and -779 ML, Rutile at a depth of -779 ML is higher contents (WO3, FeO and BaO) than rutile at a depth of -275 ML. The substitutions of rutile at a depth of -275 ML and -779 ML are as followed : rutile at a depth of -275 ML Ba2+ + Al3+ + Hf4+ + (Nb5+, Ta5+) ↔ 3Ti4+ + Fe2+, 2V4+ + (W5+, Ta5+, Nb5+) ↔ 2Ti4+ + Al3+ + (Fe2+, Ba2+), Al3+ + V4++ (Nb5+, Ta5+) ↔ 2Ti4+ + 2Fe2+, rutile at a depth of -779 ML 2 (Fe2+, Ba2+) + Al3+ + (W5+, Nb5+, Ta5+) ↔ 2Ti4+ + (V4+, Hf4+), Fe2+ + Al3+ + Hf 4+ + (W5+, Nb5+, Ta5+) ↔ 2Ti4+ + V4+ + Ba2+, respectively. Based on these data and chemical composition of rutiles from orogenic-type deposits, rutiles from Gubong deposit was formed in a relatively oxidizing environment than the rutile from orogenictype deposits (Unsan deposit, Kori Kollo deposit, Big Bell deposit, Meguma gold-bearing quartz vein).

The Cenetic Implication of Hydrothermal Alteration of Epithermal Deposits from the Mugeuk Area (무극 지역 천열수 광상 열수변질대의 성인적 의미)

  • 박상준;최선규;이동은
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.265-280
    • /
    • 2003
  • The Mugeuk mineralized area that associated with the pull-apart type Cretaceous Eumseong basin is composed of several gold-silver vein deposits that are emplaced in late Cretaceous biotite granite. The gold-silver deposits in the area show various hydrothermal alteration zones as well as Au/Ag ratios and ore mineralogy. The Geumbong mine showing relatively high gold fineness is composed of multiple veins and show alteration pattern; vein \longrightarrow phyllic \longrightarrow subphyllic \longrightarrow propylitic \longrightarrow subpropylitic zone. In contrast, The Taegeuk mines show the low fineness values, in far southern part are characterized by increasing tendency of simple and/or stockwork veins. The deposit displays alteration pattern; vein \longrightarrow propylitic \longrightarrow subpropylitic zone. Variations of alteration zone with depth show that phyllic zone are dominant in deeper level and propylitic zone sporadically overlapped by argillic zone are dominant in shallow level. The differences of alteration pattern between the gold-silver deposits are reflect the evolution of the hydrothermal fluids; the ore-forming fluids of the Geumbong mine are at relatively high temperature and salinity and highly-evolved meteoric water, developing phyllic zone, the Taegeuk mine containing greater amounts of less-evolved meteoric waters shows relatively low temperature and salinity in ore-forming fluids, developing propylitic zone. The various physicochemical environment for gold-silver mineralization in the Mugeuk mineralized area is due to proximity from heat source area (Mugeuk mine) to marginal area (Taegeuk mine) in a geothermal field. Therefore, it is suggested that the criteria for project exploration in the area are to focus on the area proximal to heat source and phyllic zone.

화강암 분포 지역에서 화학적 풍화변질지수와 풍화등급의 비교

  • 김성욱;이선갑;류호정;김춘식;김인수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.266-271
    • /
    • 2004
  • 지리적으로 이격된 마산과 서부산 지역의 불국사 화강암 분포지에서 정량적인 풍화도를 판별하기 위해 화학적 풍화지수와 등급을 산정하였다. 연구를 위해 채취된 시료에 대해 풍화 생성광물 동정, 전암분석, 산침수에 의한 이온용출 시험을 실시하였으며, 풍화지수와 지형적인 요소와 풍화속도를 고려하여 풍화등급들 산정하였다. 분석 결과 동일한 물리적, 광물학적 특성을 가지고 있으나 풍화에 따라 생성되는 점토광물의 종류와 함량에서 차이를 보여주며, 풍화의 진행 경로과 범위는 매우 상이한 결과를 보여 준다. 이러한 결과는 암석의 풍화가 모암의 조건 외에 지형, 지질구조, 기온, 강수량과 같은 환경적인 요소에 밀접하게 관련되어 있는 것을 의미할 뿐만 아니라 풍화도 산정에서 환경적인 요소에 대한 해석이 반드시 요구된다.

  • PDF

Iron Oxide Minerals in the Sancheong Kaolin Deposits (산청지역 고령토 광상에서 산출되는 산화철 광물)

  • 정기영;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.79-88
    • /
    • 1990
  • 고령토의 조직과 산출상태의 관찰결과 산화철 광물을 침전시킨 철의 주요 근원은 모암인 회장암에 함유된 각섬석과 녹니석이다. X선 회절 분석결과 침철석은 녹니석이 버미큘 라이트로 변질되고 각섬석이 용해되기 시작하는 하부 백색 광석에서 우세하며, 적철석은 각섬석, 녹니석 및 버미큘라이트가 심한 용탈작용을 받는 상부 적갈색 광석이나 열 개에서 침철석과 함께 산출된다. 침철석 및 적철석내 Fe에 대한 Al의 치환량은 각각 6~26 mol% 및 5~8mol%이며 이 두 값 사이에는 비례 관계가 있다. 회절선폭의 크기로부터 계산된 침철석과 적철석의 평균 입자크기는 340$\AA$ 이하이며 침철석은 약간의 침상을 보이는 반면 적철석은 탁상이다. 전자현미경 관찰에 의하면 버미큘라이트와 수반되는 침철석은 침상 또는 성상이나 적갈색 광석에서는 그러한 특징이 작다. 적철석은 육각 또는 원형을 보이나 상부 적갈색 광석에서는 보다 불?칙한 모양이다. 적철석과 침철석의 광물학적 특성을 합성실험에서 보고된 결과들과 비교하여 성인적 측면에서 논의되었다. 이 지역에서는 침철석과 적철석의 생성에 적합한 기후조건들이 중첩된 것으로 생각된다.

  • PDF