• Title/Summary/Keyword: 모수결정

Search Result 278, Processing Time 0.025 seconds

위험인자(危險因子)와 자본자산(資本資産)의 가격결정(價格決定)

  • Lee, Il-Gyun
    • The Korean Journal of Financial Studies
    • /
    • v.3 no.2
    • /
    • pp.1-49
    • /
    • 1996
  • 본 논문에서는 자본시장의 변동성을 충분히 해명할 수 있는 가격결정모형이 정립되었다. 자본 자산의 가격은 세개의 위험에 대한 프리미엄의 총화임이 도출되었다. 이 세개 위험은 소비베타와 유사한 형태를 갖는 모수, 시장베타와 유사한 형태의 모수, 그리고 총국민생산의 성장률과 자산과의 공분산에 의하여 정의되는 모수이다. 이 모수를 각각 소비위험모수, 시장위험모수 및 생산위험모수라 할 수 있다. 자산의 가격을 결정하기 위하여 가격화(pricing)되는 체계적 위험이 세개라는 것은 중요한 함의인 것이다. 자산의 가격은 소비와 시장에 의하여 결정된다. 소비와 시장은 자체의 독립적 영역과 서로 상대에 대하여 상호작용하는 영역을 갖는다. 독립적 영역에서 생성되는 위험이 소비모수와 시장모수로 표상되며, 이 양자의 상호작용관계가 생산모수로 귀일한다.

  • PDF

A Study on the Reliability Attributes of the Software Reliability Model Following the Shape Parameter of Minimax Life Distribution (미니맥스 수명분포의 형상모수를 따르는 소프트웨어 신뢰모형에 관한 신뢰속성에 관한 연구)

  • Kim, Hee-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.325-330
    • /
    • 2018
  • This paper, following the shape parameters of the minimax distribution, describes the special form of the beta distribution, the Minimax distribution, as a function of the shape parameters for the software reliability model based on the non-homogeneous Poisson process. Characteristics and usefulness were discussed. As a result, the case of the shape parameter 1 of Minimax distribution than less than and greate in mean squared error is the smallest, in determination coefficient, appears to be high, the shape parameter 1 of Minimax distribution regard as an efficient model. The estimated determination coefficient of the proposed model is estimated to be more than 95%, which is a useful model in the field of software reliability. Through this study, software design and users can identify the software failure characteristics using mean square error, decision coefficient, and confidence interval can be used as a basic guideline.

인공신경망과 사례기반추론을 활용한 옵션가격결정에 관한 연구

  • 김명섭;김광용
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.375-382
    • /
    • 1999
  • 본 연구는 데이터마이닝 기법과 전문가 지식을 활용한 옵션가격 결정모형을 제시하는데 목적이 있다. 첫째, 데이터마이닝 기법 주의 하나인 인공신경망 기법을 활용하여 변동성과 옵션가격을 추정하고, 이를 전통적인 재무이론의 결과와 비교하였다. 인공신경망으로 추정된 변동성은 기존의 모형에 비해 개선된 성과를 보였으며, 가격결정모형은 대등한 성과를 보였다. 또한 모수적 기법과 비모수적 기법의 통합을 통해 성과의 개선을 가져올 수 있음을 보였다. 둘째, 시장 참여자들의 정보를 반영하여 옵션의 이론적 가격결정모형의 성과를 개선할 수 있는 사례기반추론시스템을 제안하였다.

  • PDF

Robust determination of control parameters in K chart with respect to data structures (데이터 구조에 강건한 K 관리도의 관리 모수 결정)

  • Park, Ingkeun;Lee, Sungim
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1353-1366
    • /
    • 2015
  • These days Shewhart control chart for evaluating stability of the process is widely used in various field. But it must follow strict assumption of distribution. In real-life problems, this assumption is often violated when many quality characteristics follow non-normal distribution. Moreover, it is more serious in multivariate quality characteristics. To overcome this problem, many researchers have studied the non-parametric control charts. Recently, SVDD (Support Vector Data Description) control chart based on RBF (Radial Basis Function) Kernel, which is called K-chart, determines description of data region on in-control process and is used in various field. But it is important to select kernel parameter or etc. in order to apply the K-chart and they must be predetermined. For this, many researchers use grid search for optimizing parameters. But it has some problems such as selecting search range, calculating cost and time, etc. In this paper, we research the efficiency of selecting parameter regions as data structure vary via simulation study and propose a new method for determining parameters so that it can be easily used and discuss a robust choice of parameters for various data structures. In addition, we apply it on the real example and evaluate its performance.

Exploring Ways to Improve the Predictability of Flowering Time and Potential Yield of Soybean in the Crop Model Simulation (작물모형의 생물계절 및 잠재수량 예측력 개선 방법 탐색: I. 유전 모수 정보 향상으로 콩의 개화시기 및 잠재수량 예측력 향상이 가능한가?)

  • Chung, Uran;Shin, Pyeong;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.4
    • /
    • pp.203-214
    • /
    • 2017
  • There are two references of genetic information in Korean soybean cultivar. This study suggested that the new seven genetic information to supplement the uncertainty on prediction of potential yield of two references in soybean, and assessed the availability of two references and seven genetic information for future research. We carried out evaluate the prediction on flowering time and potential yield of the two references of genetic parameters and the new seven genetic parameters (New1~New7); the new seven genetic parameters were calibrated in Jinju, Suwon, Chuncheon during 2003-2006. As a result, in the individual and regional combination genetic parameters, the statistical indicators of the genetic parameters of the each site or the genetic parameters of the participating stations showed improved results, but did not significant. In Daegu, Miryang, and Jeonju, the predictability on flowering time of genetic parameters of New7 was not improved than that of two references. However, the genetic parameters of New7 showed improvement of predictability on potential yield. No predictability on flowering time of genetic parameters of two references as having the coefficient of determination ($R^2$) on flowering time respectively, at 0.00 and 0.01, but the predictability of genetic parameter of New7 was improved as $R^2$ on flowering time of New7 was 0.31 in Miryang. On the other hand, $R^2$ on potential yield of genetic parameters of two references were respectively 0.66 and 0.41, but no predictability on potential yield of genetic parameter of New7 as $R^2$ of New7 showed 0.00 in Jeonju. However, it is expected that the regional combination genetic parameters with the good evaluation can be utilized to predict the flowering timing and potential yields of other regions. Although it is necessary to analyze further whether or not the input data is uncertain.

An Economic Design of s-Charts (S-관리도(管理圖)의 경제적설계(經濟的設計))

  • Ju, Sang-Yun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.6 no.2
    • /
    • pp.31-36
    • /
    • 1980
  • This paper proposes a very simple algorithm for determining the parameters in the economic design of s-charts. These parameters are the sample size, the factor determining the spread of the control limit and the sampling interval. Several examples show that the parameters determined by this algorithm are very close to the exact optimal values.

  • PDF

Nonparmetric Method for Identifying Effective and Safe Doses using Placement (유효하고 안전한 용량 결정에 위치를 이용한 비모수적 방법)

  • Kim, Sunhye;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.7
    • /
    • pp.1197-1205
    • /
    • 2014
  • Typical clinical dose development studies consist of the comparison of several doses of a drug with a placebo. The primary interest is to find therapeutic window that satisfying both efficacy and safety. In this paper, we propose nonparametric method for identifying effective and safe doses in linear placement using score function. The Monte Carlo simulation is adapted to estimate the power and the family-wise error rate(FWE) of proposed procedure are compared with previous methods.

Parameter Tuning in Support Vector Regression for Large Scale Problems (대용량 자료에 대한 서포트 벡터 회귀에서 모수조절)

  • Ryu, Jee-Youl;Kwak, Minjung;Yoon, Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • In support vector machine, the values of parameters included in kernels affect strongly generalization ability. It is often difficult to determine appropriate values of those parameters in advance. It has been observed through our studies that the burden for deciding the values of those parameters in support vector regression can be reduced by utilizing ensemble learning. However, the straightforward application of the method to large scale problems is too time consuming. In this paper, we propose a method in which the original data set is decomposed into a certain number of sub data set in order to reduce the burden for parameter tuning in support vector regression with large scale data sets and imbalanced data set, particularly.

Probabilistic Reservoir Inflow Forecast Using Nonparametric Methods (비모수적 기법에 의한 확률론적 저수지 유입량 예측)

  • Lee, Han-Goo;Kim, Sun-Gi;Cho, Yong-Hyon;Chong, Koo-Yol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.184-188
    • /
    • 2008
  • 추계학적 시계열 분석은 크게 수문자료의 장기간 합성과 실시간 예측으로 구분해 볼 수 있다. 장기간 합성은 주로 수문자료의 추계적 특성을 반영한 수자원 시스템의 운영율 개발에 이용되어 왔다. 반면에 실시간 예측은 수자원 시스템의 순응적(adaptive) 관리에 적용되고 있다. 두 개념의 차이로 전자는 시계열 자료를 합성하여 발생 가능한 모든 수문조합을 얻고자 하는 것이라면 후자는 전 시간의 수문량을 조건으로 하는 다음 시간의 값을 순응적으로 예측하는 것이라 할 수 있다. 수문자료의 합성과 예측에는 크게 결정론적, 확률론적 방법의 두 가지 대별될 수 있다. 결정론적 모델링 방법에는 인공신경망이나 Fuzzy 기법 등을 이용할 수 있으며, 확률론적 방법에는 ARMAX 등의 모수적 기법과 k-NN(k-nearest neighbor bootstrap resampling), KDE(kernel density estimates), 추계학적 인공신경망 등의 비모수적 기법으로 분류할 수 있다. 본 연구에서는 대표적 비모수적 기법인 k-NN를 이용하여 충주댐을 대상으로 월 및 일 유입량 자료의 예측 정도를 살펴보았다. 전 시간 관측치를 조건으로 하는 다음 시간의 조건부 확률분포를 구하여 평균값을 계산한 후 관측치와 비교함으로써 모형의 정도를 살펴보았다. 그리고 실시간 저수지 운영에 이 기법의 활용성과 장단점도 살펴보았다. 모형개발 절차로 모형의 보정을 거쳐 검증을 실시하였다. 결론적으로 월 및 일 유입량 예측에 k-NN 기법이 실무적으로 적용될 수 있었으며, 장점으로는 k-NN 기법이 다른 기법보다 모델링 절차가 비교적 쉬워 저수지 운영 최적화 등 타 시스템과의 연계에 수월함이 인식되었다.

  • PDF

Fractional Differencing, Long-memory Dynamics, and Asset Pricing (분수차분 장기기억과정과 증권의 가격결정)

  • Rhee, Il-King
    • The Korean Journal of Financial Management
    • /
    • v.18 no.1
    • /
    • pp.1-21
    • /
    • 2001
  • 주가가 장기기억과정에 의하여 생성되면 주가과정에 가해진 충격은 쌍곡선감소율로 소멸한다. 따라서 충격의 영향이 대단히 느리게 감소하여 충격이 지속성을 가진다. 반면 주가가 단기 기억과정을 따르면 지수율로 감소하여 소멸한다. 지수율감소는 충격의 영향을 급속히 소멸시키므로 충격의 영향이 조만간 소멸한다. 따라서 충격으로 변화된 주가는 평균으로 회귀한다. 충격의 영향이 영원히 존재하는 과정도 존재한다. 장기기억과정은 쪽거리차분과정 또는 분수차분과정이다. 차분모수가 분수일 것이 요구되는 시계열은 장기기억과정이다. 주가가 장기기억과정에 의하여 생성되고 있는지의 여부를 검정하였다. 장기기억과정을 형성시키는 차분모수는 분수차분모수이다. 일별 주가지수의 수익률을 사용하여 차분모수를 추정하였는 바 그 값이 0에 근접하고 있음이 밝혀졌다. 그러나 Kospi, Nasdaq과 Mib30은 장기기억모수가 0에 접근하고 있으나 0이 아니다. 따라서 이 지수들은 장기기억과정에 의하여 생성된다고 할 수 있다. 반면 Dow Jones, S&P 500와 Dax는 장기기억모수가 0이라는 가설이 기각되지 않고 있어 이 지수들은 단기기억과정을 따르고 있다. 따라서 평균회귀과정에 의하여 생성되고 있음을 알 수 있다.

  • PDF