• Title/Summary/Keyword: 모바일 헬스케어 서비스

Search Result 118, Processing Time 0.024 seconds

Implementation of Dynamic Situation Authentication System for Accessing Medical Information (의료정보 접근을 위한 동적상황인증시스템의 구현)

  • Ham, Gyu-Sung;Seo, Own-jeong;Jung, Hoill;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.31-40
    • /
    • 2018
  • With the development of IT technology recently, medical information systems are being constructed in an integrated u-health environment through cloud services, IoT technologies, and mobile applications. These kinds of medical information systems should provide the medical staff with authorities to access patients' medical information for emergency status treatments or therapeutic purposes. Therefore, in the medical information systems, the reliable and prompt authentication processes are necessary to access the biometric information and the medical information of the patients in charge of the medical staff. However, medical information systems are accessing with simple and static user authentication mechanism using only medical ID / PWD in the present system environment. For this reason, in this paper, we suggest a dynamic situation authentication mechanism that provides transparency of medical information access including various authentication factors considering patient's emergency status condition and dynamic situation authentication system supporting it. Our dynamic Situation Authentication is a combination of user authentication and mobile device authentication, which includes various authentication factor attributes such as emergency status, role of medical staff, their working hours, and their working positions and so forth. We designed and implemented a dynamic situation authentication system including emergency status decision, dynamic situation authentication, and authentication support DB construction. Finally, in order to verify the serviceability of the suggested dynamic situation authentication system, the medical staffs download the mobile application from the medical information server to the medical staff's own mobile device together with the dynamic situation authentication process and the permission to access medical information to the patient and showed access to medical information.

Medical Service Based on AR and VR (가상 증강현실 기반의 의료서비스)

  • Yeon, YunMo;Woo, SungHee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.803-806
    • /
    • 2016
  • 'Pokemon Go',which is game program, provides a clue to solve the problem of healthcare in the sense of leading changes in behavior of the users. 'Pokemon Go'is a spin-off of the $Pok{\acute{e}}mon$ game series and uses Augmented Reality(AR) technology. AR, which can be said to complement the real world, has been used in many fields such as medical applications, broadcasting, manufacturing, the mobile sector as a wide range of technologies. In particular, the medical field as area of the active application from the start of AR, provides a great help in medical fields, that is accurate medical diagnosis and prevention of unnecessary dissection by synthesizing the patient information and the image of actual patient on three-dimensional data of the sensor such as MRI or ultrasonic wave. In this study, we analyze the VR technology trends, application examples, and the future of VR and AR based medical services in healthcare.

  • PDF

Design and Implementation of M2M-based Smart Factory Management Systems that controls with Smart Phone (스마트폰과 연동되는 M2M 기반 스마트 팩토리 관리시스템의 설계 및 구현)

  • Park, Byoung-Seob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.189-196
    • /
    • 2011
  • The main issues of the researches are monitoring environment such as weather or temperature variation and natural accident, and sensor gateways which have mobile device, applications for mobile health care. In this paper, we propose the SFMS(Smart Factory Management System) that can effectively monitor and manage a green smart factory area based on M2M service and smart phone with android OS platform. The proposed system is performed based on the TinyOS-based IEEE 802.15.4 protocol stack. To validate system functionality, we built sensor network environments where were equipped with four application sensors such as Temp/Hum, PIR, door, and camera sensor. We also built and tested the SFMS system to provide a novel model for event detection systems with smart phone.

Development of 2.4GHz ISM Band Wireless Communication Platform based on Embedded Linux (임베디드 리눅스 기반의 2.4GHz ISM 밴드 무선 통신 플랫폼 개발)

  • Ohm, Woo-Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.175-181
    • /
    • 2015
  • In this paper, we develop a 2.4GHz ISM band wireless communication platform prototype based on embedded linux which support can be u-Hospital service. The developed system is available connecting between ARM920T processor board and FPGA board and linking IEEE 802.11b PHY board, AD/DA(10Bit) and RF(2.4GHz) board for wireless access. It is also can be utilized for the embedded system design with IEEE 802.11b/g Access Point(Option: IEEE 802.11a/b/g) test due to the Embedded Linux. Also, the developed system is possible to test and verify the radio access technology, Modem(OFDM etc) and IP(Intellectual Property) circuit. And make the most use of the system, we search for a expansion to that home and mobile healthcare, wellness service application.

Privacy-Preserving Method to Collect Health Data from Smartband

  • Moon, Su-Mee;Kim, Jong-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.113-121
    • /
    • 2020
  • With the rapid development of information and communication technology (ICT), various sensors are being embedded in wearable devices. Consequently, these devices can continuously collect data including health data from individuals. The collected health data can be used not only for healthcare services but also for analyzing an individual's lifestyle by combining with other external data. This helps in making an individual's life more convenient and healthier. However, collecting health data may lead to privacy issues since the data is personal, and can reveal sensitive insights about the individual. Thus, in this paper, we present a method to collect an individual's health data from a smart band in a privacy-preserving manner. We leverage the local differential privacy to achieve our goal. Additionally, we propose a way to find feature points from health data. This allows for an effective trade-off between the degree of privacy and accuracy. We carry out experiments to demonstrate the effectiveness of our proposed approach and the results show that, with the proposed method, the error rate can be reduced upto 77%.

Design of an Efficient Electrocardiogram Measurement System based on Bluetooth Network using Sensor Network (Bluetooth기반의 센서네트워크를 이용한 효율적인 심전도 측정시스템 설계)

  • Kim, Sun-Jae;Oh, Won-Wook;Lee, Chang-Soo;Min, Byoung-Muk;Oh, Hae-Seok
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.699-706
    • /
    • 2009
  • The convergence tendency accelerates the realization of the ubiquitous healthcare (u-Healthcare) between the technology including the power generaation and IT-BT-NT of the ubiquitous computing technology. By rapidly analyzing a large amount of collected from the sensor network with processing and delivering to the medical team an u-Healthcare can provide a patient for an inappropriate regardless of the time and place. As to the existing u-Healthcare, since the sensor node all transmitted collected data by using with the Zigbee protocol the processing burden of the base node was big and there was many communication frequency of the sensor node. In this paper, the u-Healthcare system in which it can efficiently apply to mobile apparatuses it provided the transfer rate in which it is superior to the bio-signal delivery where there are the life and direct relation which by using the Bluetooth instead of the Zigbee protocol and in which it is variously used in the ubiquitous environment was designed. Moreover, by applying the EEF(Embedded Event Filtering) technique in which data in which it includes in the event defined in advance selected and it transmits with the base node, the communication frequency and were reduced. We confirmed to be the system in which it is efficient through the simulation result than the existing Electrocardiogram Measurement system.

The Effects of a Mobile Personal Health Records (PHR) Application on Consumer Health Behavior (모바일 개인건강기록(Personal Health Records: PHR) 어플리케이션의 이용이 소비자 건강행태에 미치는 영향)

  • Yi, Yong Jeong
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.4
    • /
    • pp.7-26
    • /
    • 2016
  • The present study aimed at investigating the strengths and weaknesses of a mobile personal health record (PHR) application and identifying its impacts on consumer health information behavior. For the study, twenty-seven college students used a PHR application for three months, based on which the study conducted paper-based interviews with them. The results of content analysis highlighted the benefits of the PHR such as supporting preventive healthcare and motivating and providing specific guidelines for healthy lifestyles by utilizing visual interface design, sharing the data with family and assisting caregivers to manage patients' healthcare, and above all enhancing the interaction between patients and healthcare professionals. However, the study found the drawbacks of the PHR such as a lack of data entry for strength training and the incompatibility with other healthcare applications. The participants were motivated to change their health behaviors in ways such as getting rid of sleep disorders, avoiding alcohol and smoking tobacco, and losing weight, and changing eating habits. Some consumers improved self-efficacy by changing their health behaviors, while the PHR provided emotional supports to the consumers who wanted to improve their health. The present study has an academic significance because the study of PHR is a burgeoning area in Korea. The study provides insights for promoting health and medical information services to cope with the paradigm shift of healthcare fields.

Natural Language Processing Model for Data Visualization Interaction in Chatbot Environment (챗봇 환경에서 데이터 시각화 인터랙션을 위한 자연어처리 모델)

  • Oh, Sang Heon;Hur, Su Jin;Kim, Sung-Hee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.281-290
    • /
    • 2020
  • With the spread of smartphones, services that want to use personalized data are increasing. In particular, healthcare-related services deal with a variety of data, and data visualization techniques are used to effectively show this. As data visualization techniques are used, interactions in visualization are also naturally emphasized. In the PC environment, since the interaction for data visualization is performed with a mouse, various filtering for data is provided. On the other hand, in the case of interaction in a mobile environment, the screen size is small and it is difficult to recognize whether or not the interaction is possible, so that only limited visualization provided by the app can be provided through a button touch method. In order to overcome the limitation of interaction in such a mobile environment, we intend to enable data visualization interactions through conversations with chatbots so that users can check individual data through various visualizations. To do this, it is necessary to convert the user's query into a query and retrieve the result data through the converted query in the database that is storing data periodically. There are many studies currently being done to convert natural language into queries, but research on converting user queries into queries based on visualization has not been done yet. Therefore, in this paper, we will focus on query generation in a situation where a data visualization technique has been determined in advance. Supported interactions are filtering on task x-axis values and comparison between two groups. The test scenario utilized data on the number of steps, and filtering for the x-axis period was shown as a bar graph, and a comparison between the two groups was shown as a line graph. In order to develop a natural language processing model that can receive requested information through visualization, about 15,800 training data were collected through a survey of 1,000 people. As a result of algorithm development and performance evaluation, about 89% accuracy in classification model and 99% accuracy in query generation model was obtained.