• Title/Summary/Keyword: 모르터

Search Result 340, Processing Time 0.021 seconds

Characteristics of Lightweight and Thermal Insulation of Bituminous Coal Bottom Ash (유연탄 bottom ash의 경량 및 단열 특성)

  • Lee, Jong Gyu;Yeo, Woon Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.1
    • /
    • pp.39-45
    • /
    • 2018
  • Research on FA(Fly ash) is actively carried out, while the research on BA(Bottom ash) is not so, and research on BA recycling field is urgently required. Therefore, in this study, we investigated the lightweight and thermal insulation characteristics of BA mortar by comparing BA mortar made with porous dry BA(air-cooled) and general mortar. To investigate the lightweight of BA, density test, unit volume mass test and SEM(Scanning Electron Microscope) test were performed. BA mortar and general mortar molds were prepared for the thermal insulation test at room temperature and humidity environment determined by KS A 0006 and they were dried at the temperature of $105{\pm}2^{\circ}C$ until the weight became constant. As a result of the lightweight test, the lightweight of BA mortar is about 30% lighter than the general mortar. Therefore, BA is expected to contribute to reduce the building load when used as building material. As a result of thermal insulation test, the thermal conductivity of BA mortar is about 30% better than that of general mortar.

A Study on te Water Diffusion of Polymer-Modified Mortars in Drying Process (건조과정에 있어서 폴리머 시멘트 모르터의 수분확산에 관한 연구)

  • 조영국;소양섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.135-143
    • /
    • 1996
  • Diffusion of water in hardened cement concrete and mortar influences on the dry shrinkage. creep. modulus of' elasticity, etc. In general, water loss through drying process in polymer-modified concrete and mortar is small compared with that of unmodified concrete and mortar due to the films formed by polymer as cement modifieder. The purpose of this study is to investigate the diffusion process of water in the polymer-modified mortars. The polymer-modified mortars using three polymer dispersions and epoxy resin are prepared with various polymer-cement ratios, and water diffusion coefficient of polymer-modified mortars according to inside water content is calculated. From the test results, the water diffusion coefficient of polymer modified mortars i s smaller than that of unmodified mortars and decreases with increasing polymer cement ratio.

Studies on Influence of Water-Proof Agents on the Properties of Mortar (방수제(防水劑)가 모르터의 제성질(諸性質)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Kim, Seong Wan;Sung, Chan Yong;Kim, Sun Young
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.2
    • /
    • pp.358-372
    • /
    • 1987
  • This study was performed to obtain data which can be applied to use of water-proof mortars. The data was based on the properties of water-proof mortars depending upon various mixing ratios to compare those of cement mortar. The water-proof agents used were retard and accelerate type which are being used as mortar structures. The water-proof agents, mixing ratios of cement to fine aggregate were 1:1, 1:2, 1:3 and 1:4. The results obtained were summarised as follows; 1. The results of flow test, water-cement ratio was increased with the increasing of mixing ratio. 2. The permeability were increased in poorer mixing ratio and higher water pressure. 3. The bulk density was decreased with the increasing of mixing ratio, and compressive and tensile strength were increased with increasing of the bulk density. 4. At 1:1 mixing ratio, the highest strengths were showed and strengths were decreased with the increasing of mixing ratio. 5. The absorption rates were increased in- poorer mixing ratio 6. The correlation between W/C, permeability, bulk density, compressive strength and absorption rate were highly significant as a straight line, respectively.

  • PDF

Effect of Inorganic Pigments on the Workability of Cement Mortars (무기안료가 시멘트모르터의 유동성 미치는 영향)

  • Lee Jae-Yong;Go Seong-Seok;Lee Hyun-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.1 no.2 s.2
    • /
    • pp.63-70
    • /
    • 2000
  • Since inorganic pigment, among admixtures used for cement composites, can raise the esthetic value of a building due to its effect of coloring, it can be assumed that the quantity consumed is expected to increase in connection with the recent trend of emphasizing the beautiful sights of the city. We carried out a flow test by changing the mix proportion of the cement mortar mixed with an inorganic pigment, water-cement ratio and pigment mixing ratio in order to present the basic materials for utilizing colored cement mortars. In construction by exploring the effect of inorganic pigments on the workability of cement mortar. In case of red pigment mortar and yellow pigment mortar, the workability was found to be rapidly decreased. To secure proper workability, it is necessary to increase the amount of mixing water, or to use superplasticizer. In case of green pigment mortar, however, it recorded $-2.4{\~}6.9{\%}$, showing that there was almost no change in flow. In case of black pigment mortar, it was also confirmed that there is no need to consider workability.

  • PDF

Mechanical Properties of Epoxy-Modified Mortars and Concretes without Hardener (경화제 무첨가 에폭시 시멘트 모르터 및 콘크리트의 역학적 성질)

  • 조영국;소양섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.157-165
    • /
    • 1996
  • The purpose of this study is to develop the epoxy-modified mortars and concretes without hardener having a good balance between performance and cost. In this study, the epoxy-modified and concretes without and with the hardener are prepared with various polymer-cement ratios, and tested for the mechanical properties of the epoxy-modified mortars and concretes without and with the hardener. From the test results, the epoxy-modified mortars and concretes without the hardener having an excellent mechanical properties are developed at low polymer-cement ratios of 10 to 20% compared with those of conventional epoxy-modified mortars and concretes with the hardener.

Shear Resistance of Light-gauge Steel Stud Wall infilled with light-weight foamed mortar (경량기포모르터와 합성한 경량형강 벽체의 전단 저항)

  • Lee, Sang Sup;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.397-406
    • /
    • 2004
  • This paper presents the test and evaluation results on the shear strength and stiffness of a light steel stud wall from a lightweight foamed mortar (lightweight hybrid wall). The use of a lightweight foamed mortar was aimed at improving structural performance, thermal performance, and finish. Studiesshowed that it did not affect thermal performance, but it contributed to structural performance and finish when the unit weight was more than 0.8 (Editor's note: Please indicate the unit of measurement.). In this study, 14 specimens-whose parameters included the specific gravity of the lightweight foamed mortar (0.6, 0.8, 1.0, 1.2), the spacing of the stud (450 mm, 600 mm, or 900 mm), finishing materials (such as lightweight foamed mortar, OSB, and gypsum board), and bracing-were manufactured. Three typical, steel house-framing specimens were added to compare the test results with the 14 specimens. The results of in-plane shear tests show that the use of lightweight foamed mortar (1.15~5.38 times stronger, 1.45~13.7 times stiffer) results in ultimate strength and initial stiffness. In addition, it was possible to widen the stud spacing to up to 900 mm without decreasing shear strength. It was very important to prevent the lightweight foamed mortar from shrinking and to secure the adhesion between the steel stud and the lightweight foamed mortar to improve structural performance.

Quality Properties of Mortar Using the Recycled Fine Aggregates and Fly Ash Depending on Mixing Factors (순환잔골재와 플라이애시를 사용하는 모르터의 배합요인 변화에 따른 품질특성)

  • Han, Cheon-Goo;Son, Seok-Heon;Park, Kyung-Taek
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.99-105
    • /
    • 2010
  • This study analyzed the effects of changes in mixing factors of zero-cement mortar that only used recycled fine aggregates and fly-ash on quality of mortar, and the results are as follows. To describe the property of fresh mortar, as mix proportion and flow of mortar increased, W/B was highly selected and air content decreased. To describe compressive strength according to age as the property of hardened mortar, it was revealed that the strength did not strength until the 14 day, but strength of about 1 ~ 2 MPa strength during the 14 day through 28 day, and almost similar strength after 28 day. Also, compressive strength according to changes in mix proportion, flow and B/W was generally similar. Summarizing the above experimental results, in case of mortar that used recycled fine aggregates and fly-ash, it secured the strength for the use of landfill even though not for structural use. Especially, poor mix proved to be more useful than rich mix.

  • PDF

A Study on the Early Strength Prediction of Lightweight Polymer Mortars by the Maturity Method (적산온도법에 의한 경량 폴리머 모르터의 초기강도 예측에 관한 연구)

  • 이윤수;대빈가언;연규석
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.191-202
    • /
    • 1998
  • The maturity method in which the strength increase of cement concrete is expressed as a function of an intergral of the curing period and temperature of the concrete has often been applied to its strength prediction. For the purpose of the application of the maturity method to the compressive strength prediction for lightweight polymer mortars using an unsaturated polyester resin as a binder, the lightweight polymer mortars with various catalyst and accelerator contents, are prepared. tested for compressive strength, and the datum temperatures for the maturity equations are estimated. The maturity is calculated by using the maturity equations with the estimated datum temperature. The compressive strengths of the lighweight polymer mortars are predicted from the maturity-compressive strength relationships.

An Experimental Study on the Chemical Resistance of Concrete(II) -The case of mortar with silica sand particle- (콘크리트의 내화학성에 관한 실험적 연구(II)-규사 분말을 치환한 모르터의 경우-)

  • 윤보현;김제원;설광욱;김명재;부척량
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.153-163
    • /
    • 1997
  • This paper is an experimental study of the chemical resistance of mortar which contains silica sand particles. The possible use of silica sand particles in the future as an admixture for improving chemical resistance of mortar is examined in mortar model experiments. The possibility of using mortar model its prediction models for the chemical resistance of concrete is examined. The results obtained are as follows. Since the experimental results from the chemical resistance tests based on the kinds and the amount of replaced admixture are similar to those from the concrete. mortar model could be used as a prediction model of chemical resistance of concrete.