• Title/Summary/Keyword: 모르타르 성능

Search Result 367, Processing Time 0.026 seconds

Sound Pressure and Vibration Characteristics of Reinforced Concrete Slab with Heavy Weight Mortar for Cross-section Recovery (단면 회복용 중량 모르타르를 사용한 철근콘크리트 슬래브의 음압 및 진동 특성)

  • Jae-Sung Kim;Jin-Man Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.3
    • /
    • pp.298-305
    • /
    • 2024
  • This paper is a basic study to improve floor impact noise of reinforced concrete slabs. Considering the case where thickness differences occur due to construction, changes in sound insulation characteristics were analyzed when the cross section of a reinforced concrete slab was restored with mortar. The houses subject to analysis were divided into two types, 84 type and 59 type, with different floor plans. When pre-mortaring was done with heavy mortar to restore the cross section on the reinforced concrete slab, the case was when pre-mortaring was done with the reinforced concrete slab alone and with general mortar. Compared with, the difference between vibration acceleration level and sound pressure was measured. As a result of measuring the vibration acceleration level of the slab after pouring the mortar, the CS mortar was 66.4 dB and the ES mortar was 66.1 dB at 84 type 63 Hz, which was more than 2 dB lower than that of regular mortar. In addition, compared to the reinforced concrete slab alone, CS mortar was reduced by 5.5 dB and ES mortar was reduced by 4.6 dB, showing relatively excellent values. As for the floor impact sound pressure, the 84B type was similar at 63 Hz for CS mortar and general mortar at 67.3 dB, and the reduction compared to the reinforced concrete slab alone was 3.6 dB for CS mortar, 2.7 dB for ES mortar, and 2.7 dB for general mortar was reduced by 1.4 dB. By pouring mortar to compensate for the thickness of the reinforced concrete slab, the vibration acceleration level and floor impact noise were reduced, and when a heavy mortar using copper smelting slag fine aggregate was used, relatively excellent performance was found.

Fireproof Performance of Mortar using Gypsum in Simplified Heating Test (간이 내화시험에 의한 석고계 모르타르의 내화성능)

  • Kang, Suk-Pyo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.2
    • /
    • pp.181-188
    • /
    • 2011
  • Spalling must be considered when designing high-strength concrete to cope with fire. This study investigates the temperature rise of steel bar in high-strength concrete coated with fireproof mortar using gypsum exposed to fire. It was found that fireproof mortar using gypsum is more effective in constraining the temperature rise of steel bar in the high strength concrete than fireproof mortar using cement, and that the thinner the cover depth of the fireproof mortar, the more significant the influence of the gypsum. In addition, while there was no difference between ${\alpha}$-hemihydrate mortar and ${\beta}$-hemihydrate mortar on the temperature rise of steel bar, the compressive strength of ${\alpha}$-hemihydrate mortar is higher than that of ${\beta}$-hemihydrate mortar.

A Study on the Water Permeability and Drying Shrinkage of Polymer Cement Composites (폴리머 시멘트 복합체의 투수성 및 건조수축에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.71-77
    • /
    • 2009
  • In a range of forms, such as latex, water-soluble polymer, liquid resin, and monomer, polymer dispersions have been widely used in the construction industry as cement modifiers because of their excellent properties, such as acid-resistance, water-proofness, and good ductility in mortar and concrete. Polymer cement slurry (polymer-modified slurry) is made of cement and polymer dispersions, with a high polymer-cement ratio of 50% or more. The purpose of this study is to evaluate the water permeability and drying shrinkage of polymer cement mortar (polymer-modified mortar) and cement concrete coated by polymer cement slurry. The polymer cement mortar and cement concrete are prepared with various polymer types, polymer-cement ratios and curing methods, and are tested for water permeability, drying shrinkage and strength. The test results showed thatthe weight of permeable water of polymer cement mortar decreases with an increase in the polymer-cement ratio, reaching a minimum at the polymer-cement ratio of 20%. In particular, the weight of permeable water of St/BA-modified mortar with a polymer-cement ratio of 20% coated with St/BA-modified slurry is about 1/55 that of unmodified mortar. The EVA- and St/BA-modified slurries coated on cement concrete have about 4 or 5 times higher drying shrinkage compared to cement concrete. The strength of polymer cement mortars tends to increase with a higher polymer-cement ratio, and is considerably higher than that of unmodified mortar. It is thus concluded that polymer cement mortars coated by polymer cement slurry are effective for industrial application, and have superior properties such as waterproofness and strengths, compared with conventional cement mortar.

Analysis of the Effect of Superplasticizer combined CASB on Ultra High Strength Mortar and Concrete Using Mineral Admixture (광물질 혼화재 사용 초고강도 모르타르 및 콘크리트에 CASB 화합 고성능감수제의 효과분석)

  • Han, Cheon-Goo;Yoo, Seung-Yeup
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.72-79
    • /
    • 2011
  • This study is performed to analyze the effects of CASB by applying the superplasticizer combined CASB on the ultra high strength mortar and concrete that uses different mineral admixture depending on whether the silica fume was used and the results are summarized below. From the characteristics of Fresh mortar and concrete, the fluidity was lower in B2-CASB than B2-PC from the mixing of CASB and based on the viscosity of the mortar and concrete in the binary proportion but in the ternary proportion, B3-CASB showed a larger fluidity than B3-PC because of a reduction in the restriction level due to the effects of an improvement of particle size distribution. The compression strength was higher in ternary proportion than in binary proportion and higher in CASB than in PC from the characteristics of hardening mortar and concrete and this is analyzed as a result of increased minuteness from the calcium silicate hydrates produced from the pozzolan reaction of a mineral admixture, SF, and also the charging effects of capillary pore of CASB. Overall, when using the nanomaterial, CASB in combination with a superplasticizer, the fluidity and the strength aspects of the ternary proportion of ultra high strength mortar and concrete with silica fume may be improved to a higher quality.

  • PDF

Evaluation of Durability on Latex Modified Mortar for maintenance in concrete structure (콘크리트 구조물 보수용 라텍스개질 모르타르의 내구성능 평가)

  • Sung, Sang-Kyoung;Park, Sung-Ki;Lee, Sang-Woo;Won, Jong-Pil;Park, Chan-Gi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.633-636
    • /
    • 2008
  • Concrete structures are occur many various deteriorations in the course of time and many efforts have progressed to improve on performance of concrete. The purpose of this study is to evaluate the durability of latex modified mortar in order to repair concrete structure which are happened deterioration. In this study, we tested plastic shrinkage, drying shirnkage, repeated freezing and thawing, permeability and resistance of chemical solution. Latex modified mortar and two kinds of sprayed polymer mortar used on durability test. As a result of test, latex modified repair mortar was exhibited durablilty improvement compared to the conventional sprayed polymer mortars. It is judged the fact that latex modified mortar have no problem in site application but additionally many research will be necessary.

  • PDF

Influence of Exposure Environmental Conditions on the Crack Healing Performance of Self-healing Repair Mortar Specimens (노출환경 조건이 자기치유형 보수 모르타르 시험체의 균열 치유성능에 미치는 영향)

  • Lee, Woong-Jong;Lee, Hyun-Ho;Ahn, Sang-Wook;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.283-288
    • /
    • 2018
  • Since the crack self-healing materials are activated according to the exposure environmental conditions from the time of crack occurrence, it is very important to clarify the relationship between the healing performance and the exposure environmental conditions of the crack surface. In this paper, the influence of the exposure environmental conditions on the crack healing performance of self-healing repair mortar was investigated through the water permeability test. The influence of temperature and humidity on the crack width of cracked specimens was evaluated. As a result of measuring the change of the crack width, the effect of curing temperature was negligible but it was confirmed that crack-closing occurred due to the change of dry-wet condition. The healing materials produced on the crack surface of the specimens was identified as calcite minerals. Since the minerals with high density are precipitated under the influence of gravity, the healing performance is somewhat different according to the direction of the crack surface, and the healing performance was significantly improved in the wet exposure condition than the air exposure condition.

An Experimental Study on the Physical Properties with Changes to Si/Al Mol Ratio of Inorganic Polymer Mortar Binder (무기폴리머계 모르타르의 결합재 Si/Al 몰비 변화에 따른 물리적 특성)

  • Choi, Hae-Young;Park, Dong-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.749-752
    • /
    • 2008
  • This experimental study compared polymer cement mortar with inorganic polymer binder mortar for physical properties by Si/Al mol ratio change of inorganic polymer binder. As the result of this experiment, We found that when Si/Al mol ratio goes up flexural strength and compressive strength increases but workability becomes worse. And according to the keeping them for 28 days we found that physcal property becomes worse when Si/Al mol ratio is larger than 2.61. When Si/Al mol ratio of inorganic polymer binder is from 2.43 to 2.61 compressive strength increases than over 32% after keeping for 7 days and over12 % for 28 days

  • PDF

Investigation on Fire Resistance of High-Performance Cement Motar with Recycled Fine Aggregate Mixed by Two-Stage Mixing Approach (2단계 배합을 사용한 순환잔골재 혼입 고성능 시멘트 모르타르의 내화성능 연구)

  • Park, Sung-Hwan;Choi, Jun-Ho;Lee, Chi Young;Koo, Min-Sung;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • This study was conducted to confirm the applicability of recycled aggregates as aggregates for structural concrete as a way to respond to the shortage of natural aggregates. The two-stage mixing approach developed by Tam et al. is known to be a method that can improve the mechanical performance of recycled aggregate concrete without the installation of new additional facilities. In this work, modified version of two stage mixing approach, which was used in our earlier work, was introduced to prepare mortar specimens with recycled fine aggregate, and the compressive strength and fire resistance were compared to mortar mixed with normal mixing approach. According to the experimental results from mortar with recycled fine aggregate, the use of two-stage mixing approach was found to be more effective than normal mixing approach for compressive strength development. In addition, the residual strengths of the mortar with two-stage mixing approach was higher than mortar made of normal mixing approach after exposure to 600 and 900 ℃. It is possible to manufacture high-performance cement composites with recycled fine aggregates through the active use of the two-stage mixing approach.

Tensile Strength of Cement Mortar using Pitch-based Carbon Fiber Derived from Oil Residues (석유피치 재활용 탄소섬유를 혼입한 모르타르의 인장 특성)

  • Rhee, Inkyu;Lee, Jun Seok;Kim, Jin Hee;Kim, Yoong Ahm;Kim, Woo
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.20-28
    • /
    • 2017
  • The direct tensile strength of the mortar specimen containing pitch-based carbon fiber was ranged between 1/27~1/22 as compared to the average compressive strength of mortar. It was found that the direct tensile strength of the mortar containing the same amount of PAN-based carbon fiber was around 1/15. While the case of the control specimen without the carbon fiber was around 1/29. One the other hands, the flexural tensile strength of the mortar containing pitch-based carbon fibers was about 1/12 as compared to the average compressive strength. In case of the mortar specimen with PAN-based carbon fiber and control mortar were 1/10 and 1/13.5, respectively. The tensile performance of the mortar with pitch-based carbon fiber was found to be intermediate between control mortar and the reinforced mortar incorporated with the PAN-based carbon fiber.

An Experimental Study on the Physical Property of Lime Mortar in the Building' Masonry (조적조 건축물의 석회 모르타르 특성에 관한 실험적 연구)

  • Kwon, Ki-Hyuk;Yu, Hye-Ran
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.133-141
    • /
    • 2009
  • 50 year-old masonry buildings which had been constructed using lime mortar have caused lots of problems because of using different material, cement mortar, when they repair them. Also, there is little information on structural capacities and details of masonry buildings built using lime mortar. In addition, it is difficult to evaluate the structural capacities of the buildings which were often constructed by untrained labors. To preserve the original masonry construction, the study on their construction materials and methodologies has to be carried out. This paper provides basic information for establishing standard details of masonry works using lime mortar in order to overcome these problems when cultural properties are repaired or retrofitted. To do this, compression tests of lime mortar were preformed with the parameters of mixing ratios, mixing material, curing time and curing conditions etc. Based on the test results, the differences between lime mortar and cement mortar were specified and the structural characteristics of lime mortar were also presented in this paper.