• Title/Summary/Keyword: 모르타르 성능

Search Result 364, Processing Time 0.025 seconds

Structural Performance of High Strength Grout-Pilled Splice Sleeve System (고강도 모르타르 충전식 철근이음의 구조성능에 관한 실험연구)

  • 김형기;안병익;남재현;박복만
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.516-524
    • /
    • 2001
  • Among many connection methods of reinforcing bar, the grout-filled splice sleeve system is very effective method of precast concrete construction due to its superior construction efficiency, such as large allowable limit to arrangement of reinforcing bars, good application of large sized reinforcing bars. In this study, totally 20 full-sited specimens were made and tested under monotonic and cyclic loading in order to extend the usage range of grout-filled splice sleeve system. The experimental variables adopted in this study are size of reinforcing bars embedded in upper and lower part of sleeve and compressive strength of filled mortar etc. After test was performed, the results were compared and analyzed with respect to previous test of author. Following main conclusions are obtained : 1) The structural performance of splice sleeve system is improved with increasing compressive strength of filled mortar. And also it was verified that the splice sleeve system with over 700 kgf/㎠ mortar compressive strength and over 6.54 development length of reinforcing bar retains the structural performance of over A class(AIJ Criteria). 2) In the case of using different size of reinforcing bars embedded in upper and lower part of sleeve, the result show that splice sleeve matching with large sized reinforcing bar must be used. And also up to 2 level smaller size of reinforcing bar compared to large reinforcing bar embedded in sleeve can be used.

Experimental Study on Fire Resistance Performance of Legal Slab under Standard Fire with Loading condition (표준화재 재하조건에서 법정슬래브의 내화성능에 관한 실험적 연구)

  • Cho, Bum-Yean;Yeo, In-Hwan;Kim, Heung-Youl;Min, Byung-Yeol;Kim, Hyung-Jun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.115-118
    • /
    • 2011
  • 본 연구에서는 현재 법정내화구조로 규정되어 있는 철근콘크리트(RC: Reinforced concrete)조 및 철골철망모르타르(SWM: Steel & Wire Mortar)조 슬래브에 대하여 재하조건에서 구조별 내화성능을 검토하고, 철골철망모르타르조 슬래브에 대해서는 피복두께별 내화성능을 검토하고자 표준화재조건에서 내화실험을 실시하였다. 실험결과 동일피복 두께일 경우 철근콘크리트조 슬래브가 내화성능이 우수한 것으로 나타났으며, 철골철망 모르타르조 슬래브의 경우 피복두께가 10mm 증가 시 7%의 내화성능이 향상되는 것으로 나타났다. 가열 이면온도는 슬래브의 두께가 늘어날수록 낮은 것으로 나타났다.

  • PDF

Performance Evaluation for Dry Shrinkage of Dry Mortar Using Artificial Aggregate Made from Circulating Fludized Bed Combution Ash and Modified CaO Type Expansive Admixture (개질 CaO 팽창재 활용 CFBC 인공잔골재 건조 모르타르의 건조수축 성능평가에 관한 연구)

  • Park, Ji-Sun;Song, Tae-Hyeob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.331-335
    • /
    • 2018
  • The purpose of this study is to investigate the feasibility of CFBC artificial fine aggregate as a substitute for natural aggregate used in dry mortar. The basic performance of the flow, compressive strength and dry shrinkage of the dry mortar was evaluated. Four types of test dry mortar specimens using natural aggregate without expansion admixture, a specimen with modified CaO expansion admixture and natural aggregate, a specimen with modified CaO expansion admixture and CFBC artificial fine aggregate, and a specimen using CFBC artificial fine aggregate without modified CaO expansion admixture were evaluated respectively. As a result of evaluation of drying shrinkage performance at 20th day of age, the dry shrinkage performance of the specimen using modified CaO expansion admixture was found to be the highest at $250{\times}10^{-6}$. On the other hand, the specimen containing the modified CaO expansion admixture with CFBC artificial aggregate exhibited a shrinkage of $410{\times}10^{-6}$, and the drying shrinkage of specimen using natural fine aggregate without expansion admixture was $450{\times}10^{-6}$. When the modified CaO expansion material was used, and exhibited performance equal to or higher than that of the shrinkage-drying property.

Structural Performance of Mortar-filled Sleeve Splice for SD500 High-strength Reinforcing Bar under Cyclic Loading (반복하중을 받는 SD500 고강도 철근용 모르타르 충전식 슬리브 철근이음의 구조성능)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.180-192
    • /
    • 2008
  • The purpose of this research is to evaluate the structural performance of mortar-filled ductile cast iron sleeve splice developed for SD500 high-strength reinforcing bar under cyclic loading. The test variables adopted in this study are the development length of bar, compressive strength of mortar, bar size, sleeve types and others. In this research, it is showed that the mortar-filled sleeve splice for SD500 high-strength bar satisfied the structural performance required in ACI, AIJ code as well as domestic code. Also the results of experimental research presented in this paper provided basic engineering data for developing a reasonable design method of mortar-filled sleeve splice for SD500 high-strength reinforcing bar.

Applicability of Ferro-nickel Slag Sand for Dry Mortar in Floor (페로니켈슬래그 잔골재의 바닥용 건조모르타르 적용성 평가)

  • Cho, Bong-Suk;Kim, Won-Ki;Hwang, Yin-Seong;Koo, Kyung-Mo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.105-112
    • /
    • 2019
  • Fine aggregate made of ferronickel slag(FNS) is similar to natural fine aggregates and is used in concrete structures both domestically and abroad, but its applications and research areas are limited. In this research, in order to expand the availability of FNS and improve the performance of cement mortar products, the applicability of FNS on dry mortar for floor was examined. Experimental results show that FNS improves flow of cement mortar because it has low absorption rate, spherical shape, and glassy surface. Also, the high stiffness of the FNS aggregate itself is considered to contribute to the improvement of cement mortar quality such as crack reduction by improving the compressive strength and shrinkage reducing. In addition, when FNS fine aggregate is applied, it was possible to secure the impact sound insulation performance equal to or higher than that of mortar using natural fine aggregate.

Flow and Strength Properties of Cement Mortar Mixed with High Range Water Reducer Containing Carboxylic Acid(II) (카르본산계 고성능 감수제를 첨가한 시멘트 모르타르의 유동 특성(II))

  • 김화중;강인규;권영도;김우성;황재현;김원기;박기청
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.3
    • /
    • pp.156-163
    • /
    • 1995
  • In the previous study, styrene mdleic dnhydride copolymer(SMA) as synthesized flom styrene and rnale~c dnhydr~de and further redcted with sulfuric acid to obtam water soluble SMA. In thls study, the flow dnd strcngth tests of cement mortar rmxed wth copolymers wele carried out to evaluate the capability of copolymers as high range water reducer for the con crete. It was found from flow exper~ment that the fluidity of cenient mortar rmxed wth sulfonated SMA(SSMAj was larger thdn that mxed ulth amnophenol substituted SSMA (SmSMAj. The decreasing rate of the flow of cement mortar rmxed ulth SSMA and SmSMA was significantly lower than that mixed ulth naphthalene condensate(NSC) The compressslve strength of the hardened cement mortars containing 0.5% copolymers after 28 dys curing was exarmned. 'The compressive strength of hdrdened cement mortar containing SSMA and SmSMA was mcreased up to 31% and 13%, respectively, when omp pared to the plain. As the results, the copolyniers(SSMA and SrnSMA) used in thls study are greatly expected as a good high range water reducers for the concrete.

A Study on the Strength and Durability of Polymer-Modified Mortars using Eco-friendly UM resin (친환경 UM수지를 사용한 폴리머 시멘트 모르타르의 강도 및 내구성에 관한 연구)

  • Kwon, Min-Ho;Kim, Jin-Sup;Park, Su-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.943-948
    • /
    • 2013
  • In this study, the characteristics of polymer-modified mortar which include UM resin, eco-friendly resin, was studied for improving the durability of concrete. UM and cement mortar were mixed with a certain percentage. Eco-friendly UM resin polymer-modified mortar was evaluated by compressive strength, splitting tensile strength, flexural strength, water absorption and chemical resistance experiments. The characteristics of eco-friendly UM resin polymer-modified mortar were evaluated by experiments. Performance of compressive strength and splitting tensile strength were decreasing. On the other hand, performance of flexural strength, water absorption and chemical resistance were increasing. Eco-friendly UM resin polymer-modified mortar reinforced concrete durability performance is excellent.

Effect of Types of Accelerators and Replacement Levels of GGBFS on the Performance of Shotcrete Mortars (숏크리트 모르타르의 성능에 대한 급결제 종류 및 고로슬래그 미분말 대체율의 영향)

  • Lee, Seung Tae;Kim, Seong Soo;Kim, Dong Gyu;Park, Kwang Pil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.76-84
    • /
    • 2013
  • In this study, some engineering properties of OPC and GGBFS shotcrete mortars with alkali-free or aluminate accelerator were experimentally examined. As a result, GGBFS mortars with alkali-free accelerator were significantly similar to OPC mortars with same accelerator with respect to both setting time and compressive strength. Comparatively, GGBFS mortars with aluminate accelerator showed a good performance with an increased replacement of GGBFS. Furthermore, when replaced with GGBFS over 50%, the mortars exhibited superior performances of electrical resistivity and chloride ions penetration resistance. Accordingly, it is suggested that GGBFS has a beneficial effect as shotcreting materials in the condition of proper replacement levels.

Behaviors of Concrete Segmented Composites Using Polymer Mortar Under Static and Impact Loadings (폴리머 모르타르를 이용한 콘크리트 분절 복합체의 정하중 및 충격하중에서의 거동 평가)

  • Min, Kyung Hwan;Lee, Jin Young;Kim, Mi Hye;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.169-177
    • /
    • 2011
  • In this study, an impact resistance of concrete segmented composites adopted shell's structures which have the excellent impact resistance was assessed. In order to enhance the performances of concrete segmented composite, the bond strength of mortar between the concrete blocks should be improved. Hence, in this study polymer mortars were applied to increase the bond strength of mortar. From the results of bond tests, the 15% latex mortar was selected and static and low-velocity impact tests were carried out for the specimens applied the plain and latex mortar. The concrete segmented composites, of which the bond strength of mortar was enhanced, showed improved low-velocity impact resistances. A Nonlinear finite element analysis using the discrete crack model showed similar energy dissipating capacities to the impact test's results. Consequently, by improving the analysis models for segmented composites, the impact resistances for manifold variables can be predicted and assessed.

Experimental Study on Evaluation of Material Properties in Cement Mortar with Pond Ash (매립회를 사용한 시멘트 모르타르의 재료 물성 평가에 대한 실험적 연구)

  • Jung, Sang Hwa;Kim, Joo Hyung;Kwon, Seung Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.108-117
    • /
    • 2013
  • Among the byproducts from thermal power plant using coal combustion, fly ash as mineral admixture is widely utilized in concrete manufacturing for its engineering merits. However residuals including bottom ash are usually reclaimed. This study presents an evaluation of engineering properties in cement mortar with pond ash (PA). For this work, two types of pond ash (anthracite and bituminous coal) are selected from two reclamation sites. Cement mortar specimens considering two w/c (0.385 and 0.485) ratios and three replacement ratio of sand (0%, 30%, and 60%) are prepared and their workability, mechanical, and durability performance are evaluated. Anthracite pond ash has high absorption and smooth surface so that it shows reasonable workability, strength development, and durability performance since it has dense pore structure due to smooth surface and sufficient mixing water inside. Reuse of PA is expected to be feasible since PA cement mortar has reasonable engineering performance compared with normal cement mortar.