• 제목/요약/키워드: 모드 붕괴

Search Result 48, Processing Time 0.022 seconds

System Reliability Analysis of Midship Sections (선체 중앙 횡단면의 시스템 신뢰성해석)

  • Y.S. Yang;Y.S. Suh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.115-124
    • /
    • 1993
  • A structural system reliability analysis is studied for the safety assessment of midship section. Probabilistically dominant collapse modes are generated by Element Replacement Method and Incrimental Load Method. In order to avoid generating the same modes repeatedly, it is branched at final plastic hinge. Using first and second order bound methods, system failure probability of midship section is computed and compared with deterministic load factor method to show the usefulness of the proposed method.

  • PDF

Research trends on the automobile crush (자동차 충돌특성 연구동향)

  • 김천욱;한병기;원종진;임채홍
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.1-17
    • /
    • 1996
  • 자동차의 안전에 대한 연구는 객실의 변형제한과 승객의 감속도 축소를 위한 여러가지 구조부재의 에너지 흡수능력 및 흡수 메카니즘을 연구하는데 초점이 맞추어져 왔다. 그 이유는 충돌사고시에 인명을 보호하기 위해서는 차제변형에 의한 물리적 접촉의 회피 뿐 아니라 충돌에너지를 적절히 흡수조절하여 충돌력을 감소시키도록 구조부재를 설계함으로써 충돌안전성이 확보되기 때문이다. 충돌에너지 흡수 특성은 구조부재의 단면 형상과 재질에 따라 달라지며 압괴모드도 구분되어진다. 즉, 복합재료의 압축붕괴특성은 금속이나 플라스틱 재질과는 다르다. 일반적으로 복합재는 재질의 파손으로 에너지가 흡수되지만 금속재는 소성변형으로 에너지를 흡수한다. 이때의 붕괴양상은 작용하중에 따라 축방향 붕괴, 굽힘붕괴, 측면붕괴의 경우는 정규압괴모드(compact mode) 및 불규칙압괴모드(noncompact mode)로 나뉘고, 원통쉘의 경우는 축대칭모드 및 다이아몬드형 모드 등으로 나뉠수 있다. 원형 및 사각 튜브는 광범위한 형상비와 후폭비를 가지도록 제작할 수 있으며 산업전반에 걸쳐 널리 쓰이므로 충돌특성 연구의 대상으로 많은 연구들이 진행되어 왔다. 또한, 충돌특성의 해석을 위한 이론적 모델이 제시되었으며 계속적인 보완이 이루어져 오고 있다.

  • PDF

Genetic Algorithm Based Optimal Seismic Design Method for Inducing the Beam-Hinge Mechanism of Steel Moment Frames (철골모멘트골조의 보-힌지 붕괴모드를 유도하는 유전자알고리즘 기반 최적내진설계기법)

  • Park, Hyo-Seon;Choi, Se-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.253-260
    • /
    • 2016
  • In this paper, the optimal seismic design method for inducing the beam-hinge collapse mechanism of steel moment frames is presented. This uses the non-dominated sorting genetic algorithm II(NSGA-II) as an optimal algorithm. The constraint condition for preventing the occurrence of plastic hinges at columns is used to induce the beam-hinge collapse mechanism. This method uses two objective functions to minimize the structural weight and maximize the dissipated energy. The proposed method is verified by the application to nine story steel moment frame example. The minimum column-to-beam strength ratio to induce the beam-hinge collapse mechanism are investigated based on the simulation results. To identify the influence of panel zone on the minimum column-to-beam strength ratio, three analytic modeling methods(nonlinear centerline model without rigid end offsets, nonlinear centerline model with rigid end offsets, nonlinear model with panel zones) are used.

Mitigating Mode Collapse using Multiple GANs Training System (모드 붕괴를 완화하기 위한 다중 GANs 훈련 시스템)

  • Joo Yong Shim;Jean Seong Bjorn Choe;Jong-Kook Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.10
    • /
    • pp.497-504
    • /
    • 2024
  • Generative Adversarial Networks (GANs) are typically described as a two-player game between a generator and a discriminator, where the generator aims to produce realistic data, and the discriminator tries to distinguish between real and generated data. However, this setup often leads to mode collapse, where the generator produces limited variations in the data, failing to capture the full range of the target data distribution. This paper proposes a new training system to mitigate the mode collapse problem. Specifically, it extends the traditional two-player game of GANs into a multi-player game and introduces a peer-evaluation method to effectively train multiple GANs. In the peer-evaluation process, the generated samples from each GANs are evaluated by the other players. This provides external feedback, serving as an additional standard that helps GANs recognize mode failure. This cooperative yet competitive training method encourages the generators to explore and capture a broader range of the data distribution, mitigating mode collapse problem. This paper explains the detailed algorithm for peer-evaluation based multi-GANs training and validates the performance through experiments.

Basic Research for Resistance Prediction of Aluminium Alloy Plate Girders Subjected to Patch Loading (패치로딩을 받는 알루미늄 합금 플레이트 거더의 강도 예측에 대한 기초 연구)

  • Oh, Young-Cheol;Bae, Dong-Gyun;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.218-227
    • /
    • 2014
  • In this paper, it performed to the elastic-plastic large deflection series analysis using the experimental model and predicted a failure mode and ultimate strength. The collapse mode of numerical analysis model is formed a plastic hinge on loaded flange and consistent with the collapse mode of experimental model. Also, The yield line is formed in the web could observed that have occurred the crippling collapse mode and the ultimate loads of the experimental model and numerical analysis model have maintained linearly Means 1.07, Standard deviation 0.04, Coefficient of variation(COV) 0.04 and the result of ultimate loads have appeared approximately 8% error rate. it was found that very satisfied to the experimental results and the applied rules. if it is considered to be maintain a reasonable safety level, it is possible to predict the failure modes of aluminium alloy plate girders and ultimate loads.

Optimal Seismic Design Method Based on Genetic Algorithms to Induce a Beam-Hinge Mechanism in Reinforced Concrete Moment Frames (철근콘크리트 모멘트골조의 보-힌지 붕괴모드를 유도하는 유전자알고리즘 기반 최적내진설계기법)

  • Se-Woon Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.399-405
    • /
    • 2023
  • This study presents an optimal seismic design method based on genetic algorithms to induce beam-hinge collapse mechanisms in reinforced concrete moment frames. Two objective functions are used. The first minimizes the cost of the structure and the second maximizes the energy dissipation capacity of the structure. Constraints include strength conditions of columns and beams, minimum conditions for column-to-beam flexural strength ratio, and conditions for preventing plastic hinge occurrence of columns. Linear static analysis is performed to evaluate the strength of members, whereas nonlinear static analysis is carried out to evaluate energy dissipation capacity and occurrence of plastic hinges. The proposed method was applied to a four-story example structure, and it was confirmed that solutions for inducing a beam-hinge collapse mechanism are obtained. The value of the column-beam flexural strength ratio of the obtained design was found to be larger than the value suggested by existing seismic codes. A more robust strategy is needed to induce a beam-hinge collapse mode.

Collapse of Thin-Walled Hatted Section Tubes (박판 상형 부재의 붕괴 특성연구)

  • Kim, C.W.;Han, B.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.65-72
    • /
    • 1994
  • Collapse characteristics of thin-walled hatted section tubes are investigated. The square section members with flanges are substituted by the equivalent rectangular tube. The stiffening effects of flanges are transformed to the restraining plate with the equivalency of buckling strength. The square tubes of single-hatted and double-hatted sections are investigated. The double-hatted section members show symmetric and antisymmetric crushing modes depending on the stiffness of flanges. The single-hatted section members show only symmetric modes. The bifurcation point of the compact crushing modes are investigated by experiments and shown almost same thickness-width ratio of the rectangular tubes. A large maximum crippling strength can be obtained by double-hatted section members with proper flange dimensions.

  • PDF

On-line Tests on Collapse Mode Controlled Steel Frame (붕괴모드 컨트롤형 철골조 시스템의 온라인 지진응답실험)

  • Lee, Seung-Jae;Oh, Sang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.1
    • /
    • pp.47-52
    • /
    • 2009
  • In this study, it is demonstrated by a pseudo dynamic earthquake response tests that combination of semi-rigid partial-strength using the high performance-high strength bolts and inter-story hysteretic damper system creates a fairly good structural system that satisfies not only the serviceability requirement under moderate earthquakes but unexpected failure of damper system.

  • PDF

A Study on Failure Mode of Pipe Elbows with Wall Thinning (두께 감소된 배관 엘보우의 파손 모드에 대한 연구)

  • Shin, Kyu-In;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.57-62
    • /
    • 2008
  • Difference of failure modes was studied by finite element analysis for elbows with local wall thinning area particularly at inner surface of intrados of the elbow. Longitudinal wall thinning length, minimum thickness were kept constant but circumferential wall thinning width was varied to get $90^{\circ}$, $180^{\circ}$ and $360^{\circ}$ thinning width. Elastic-plastic analysis were carried out under the combined loading conditions of internal pressure and in-plane bending moment closing the elbow. Von Mises stress were obtained from the outer surface central surface location in intrados, extrados and crown parts in elbow. The results showed that the plastic deformation and failure started from the crown location when the thinning width small ($90{\sim}180^{\circ}$). However, plastic collapse started from the intrados location when the thinning width is approaching $360^{\circ}C$. This should be reflected to assess structural integrity of elbows after wall thinning measurement is made.

  • PDF

Investigation for Collapse Mode of Stiffened Curved Plate with Tee Shaped Stiffeners (티(Tee)형(型) 보강재로 보강된 곡판의 붕괴모드에 대한 검토)

  • Oh, Young-Cheol;Kim, Kyung-Tak;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.3
    • /
    • pp.295-300
    • /
    • 2011
  • Ship are a box-shaped structure. It is used often fore and aft parts, bilge strake, deck with camber of ship structures. When this structure is compared with flat plate structure, it different to behaviour. Generally, if it subjected to axial compressive load, ultimate strength depend on the change of curvature. Also, In this paper, stiffened curved plate with 1/2+1+1/2 bay model subjected to compressive load carried out the elasto-plastic large deflection series analysis. and parameter effect considered slender ratio, web height/thickness as well as change of curvature and investigated collapse mode for analysis model.