DOI QR코드

DOI QR Code

Genetic Algorithm Based Optimal Seismic Design Method for Inducing the Beam-Hinge Mechanism of Steel Moment Frames

철골모멘트골조의 보-힌지 붕괴모드를 유도하는 유전자알고리즘 기반 최적내진설계기법

  • Park, Hyo-Seon (Department of Architectural Engineering, Yonsei University) ;
  • Choi, Se-Woon (Department of Architecture, Catholic University of Daegu)
  • 박효선 (연세대학교 건축공학과) ;
  • 최세운 (대구가톨릭대학교 건축학부)
  • Received : 2016.04.01
  • Accepted : 2016.04.30
  • Published : 2016.06.30

Abstract

In this paper, the optimal seismic design method for inducing the beam-hinge collapse mechanism of steel moment frames is presented. This uses the non-dominated sorting genetic algorithm II(NSGA-II) as an optimal algorithm. The constraint condition for preventing the occurrence of plastic hinges at columns is used to induce the beam-hinge collapse mechanism. This method uses two objective functions to minimize the structural weight and maximize the dissipated energy. The proposed method is verified by the application to nine story steel moment frame example. The minimum column-to-beam strength ratio to induce the beam-hinge collapse mechanism are investigated based on the simulation results. To identify the influence of panel zone on the minimum column-to-beam strength ratio, three analytic modeling methods(nonlinear centerline model without rigid end offsets, nonlinear centerline model with rigid end offsets, nonlinear model with panel zones) are used.

본 연구에서는 철골모멘트골조의 보-힌지 붕괴모드를 유도하는 최적 내진설계기법을 제안한다. 이는 유전자알고리즘을 사용하며, 기둥의 소성힌지 발생을 억제하는 제약조건을 설정하여 보-힌지 붕괴모드를 유도한다. 제안하는 기법은 구조물량를 최소화하고 에너지소산능력을 최대화하는 목적함수를 사용한다. 제안하는 기법은 9층 철골모멘트골조 예제 적용을 통해 검증한다. 예제 적용을 통해 철골모멘트골조의 보-힌지 붕괴모드를 유도하기 위해 요구되는 기둥-보 강도비를 평가한다. 패널존에 대한 3가지 모델링 기법을 각각 적용하여 모델링 조건에 따른 휨강도비 영향이 추가적으로 검토된다.

Keywords

References

  1. ACI Committee 318 (2005) Building Code Requirements for Structural Concrete(ACI 318-05) and Commentary(ACI 318R-05), American Concrete Institute.
  2. AISC (2005) Seismic Provisions for Structural Steel Buildings(ANSI/AISC 341-05), Chicago(IL): American Institute of Steel Construction.
  3. AISC (2005) ANSI/AISC 360-05 Specification for Structural Steel Buildings, American Institute of Steel Construction.
  4. ASCE 7-05 (2005) Minimum Design Loads for Buildings and other Structures, SEI/ASCE Standard No.7-05, ASCE.
  5. Bruneau, M., Uang, C. M., Sabelli, R. (1997) Ductile Design of Steel Structures, McGraw-Hill.
  6. Choi, S.W., Park, H.S. (2102) Multi-objective Seismic Design Method for Ensuring Beam-hinging Mechanism in Steel Frames, J. Constr. Steel Res., 74, pp.17-25.
  7. Choi, S.W., Yang, H.J., Park, H.S. (2010) Development of Optimal Seismic Design Model for Inverted V-type Special Concentrically Braced Frames, J. Comput. Struct. Eng. Inst. Korea, 23, pp.111-120.
  8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. (2002) A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6, pp.182-197. https://doi.org/10.1109/4235.996017
  9. Dooley, L., Bracci, J.M. (2001) Seismic Evaluation of Column-to-Beam Strength Ratios in Reinforced Concrete Frames, ACI Struct. J., 98, pp.834-851.
  10. FEMA 355C (2000) State of the Art Report on Systems Performance of Steel Moment Frames Subject to Earthquake Ground Shaking, Federal Emergency Management Agency.
  11. FEMA 356 (2000) Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agent.
  12. Foutch, D.A. Yun, S. (2002) Modeling of Steel Moment Frames for Seismic Loads, J. Constr. Steel Res., 58, pp.529-564. https://doi.org/10.1016/S0143-974X(01)00078-5
  13. Gupta A., Krawinkler, H. (1999) Seismic Demands for Performance Evaluation of Steel Moment Resisting Frame Structures. The John A. Blume Earthquake Engineering Center, Report No.132.
  14. Hasan, R., Xu, L. Grierson, D.E. (2002) Push-over Analysis for Performance-based Seismic Design, Comput. & Struct., 80, pp.2483-2493. https://doi.org/10.1016/S0045-7949(02)00212-2
  15. Krawinkler, H., Mohasseb, S. (1987) Effects of Panelzone Deformations on Seismic Response, J. Constr. Steel Res., 8, pp.233-250. https://doi.org/10.1016/0143-974X(87)90060-5
  16. Kuntz, G.L., Brouning, J. (2003) Reduction of Column Yielding during Earthquakes for Reinforced Concrete Frames, ACI Struct. J., 100, pp.573-580.
  17. Lee, H. (1996) Revised Rule for Concepts of Strong-Column Weak-Girder Design, J. Struct. Eng., 122, pp.359-364. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:4(359)
  18. Medina, R.A., Krawinkler, H. (2005) Strength Demand Issues Relevant for the Seismic Design of Moment-resisting Frames, Earthq. Spectra, 21, pp.415-439. https://doi.org/10.1193/1.1896958
  19. Nakashima, M., Sawaizumi, S. (2000) Column-to-Beam Strength Ratio Requied for Ensuring Beam- Collapse Mechanisms in Earthquake Responses of Steel Moment Frames, Proc. 12th World Conf. Earthq. Eng..
  20. Oh, B.K., Choi, S.W., Kim, Y., Jo, D.J., Park, H.S. (2014) An Analytical Study on System Identification of Steel Beam Structure for Buildings based on Modified Genetic Algorithm, J. Comput. Struct. Eng. Inst. Korea, 27, pp.231-238. https://doi.org/10.7734/COSEIK.2014.27.4.231
  21. Park, R., Paulay, T. (1975) Reinforced Concrete Structure, John Wiley and Sons.