• Title/Summary/Keyword: 모드형상함수

Search Result 71, Processing Time 0.025 seconds

Exact Solutions for Vibration and Buckling of Rectangular Plates Loaded at Two Simply-Supported Opposite Edges by In-Plane Moments, Free along the Other Two Edges (면내(面內) 모멘트를 받는 단순지지된 두 모서리와 자유경계인 나머지 두 모서리를 갖는 직사각형 판의 진동과 좌굴의 엄밀해)

  • Shim, Hyun-Ju;Woo, Ha-Young;Kang, Jae-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.81-92
    • /
    • 2006
  • This paper presents exact solutions for the free vibrations and buckling of rectangular plates having two opposite, simply supported edges subjected to linearly varying normal stresses causing pure in-plane moments, the other two edges being free. Assuming displacement functions which are sinusoidal in the direction of loading (x), the simply supported edge conditions are satisfied exactly. With this the differential equation of motion for the plate is reduced to an ordinary one having variable coefficients (in y). This equation is solved exactly by assuming power series in y and obtaining its proper coefficients (the method of Frobenius). Applying the free edge boundary conditions at y=0, b yields a fourth order characteristic determinant for the critical buckling moments and vibration frequencies. Convergence of the series is studied carefully. Numerical results are obtained for the critical buckling moments and some of their associated mode shapes. Comparisons are made with known results from less accurate one-dimensional beam theory. Free vibration frequency and mode shape results are also presented. Because the buckling and frequency parameters depend upon Poisson's ratio ( V ), results are shown for $0{\leq}v{\leq}0.5$, valid for isotropic materials.

  • PDF

Reliability Prediction of Failure Modes due to Pressure in Solid Rocket Case (고체로켓 케이스 내압파열 고장모드의 신뢰도예측)

  • Kim, Dong-Seong;Yoo, Min-Young;Kim, Hee-Seong;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.635-642
    • /
    • 2014
  • In this paper, an efficient technique is developed to predict failure probability of three failure modes(case rupture, fracture and bolt breakage) related to solid rocket motor case due to the inner pressure during the mission flight. The overall procedure consists of the steps: 1) design parameters affecting the case failure are identified and their uncertainties are modelled by probability distribution, 2) combustion analysis in the interior of the case is carried out to obtain maximum expected operating pressure(MEOP), 3) stress and other structural performances are evaluated by finite element analysis(FEA), and 4) failure probabilities are calculated for the above mentioned failure modes. Axi-symmetric assumption for FEA is employed for simplification while contact between bolted joint is accounted for. Efficient procedure is developed to evaluate failure probability which consists of finding first an Most Probable Failure Point(MPP) using First-Order Reliability Method(FORM), next making a response surface model around the MPP using Latin Hypercube Sampling(LHS), and finally calculating failure probability by employing Importance Sampling.

A Study on Calculation of Cross-Section Properties for Composite Rotor Blades Using Finite Element Method (유한요소법 기반의 복합재료 블레이드 단면 특성치 계산에 관한 연구)

  • Park, Il-Ju;Jung, Sung-Nam;Cho, Jin-Yeon;Kim, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.442-449
    • /
    • 2009
  • A two-dimensional cross-section analysis program based on the finite element method has been developed for composite blades with solid, thin-walled and compound cross-sections. The weighted-modulus method is introduced to determine the laminated composite material properties. The shear center and the torsion constant for any given section are calculated according to the Trefftz' definition and the St. Venant torsion theory, respectively. The singular value problem of cross-section stiffness properties faced during the section analysis has been solved by performing an eigenvalue analysis to remove the rigid body mode. Numerical results showing the accuracy of the program obtained for stiffness, offset and inertia properties are compared in this analysis. The current analysis results are validated with those obtained by commercial software and published data available in the literature and a good correlation has generally been achieved through a series of validation study.

Finite Element Model Updating and System Identification of Reinforced Concrete Specimen (철근콘크리트 실험체의 시스템 식별과 유한요소모델수정)

  • Kim, Hack-Jin;Yu, Eun-Jong;Kim, Ho-Geun;Lee, Sang-Hyun;Cho, Seung-Ho;Chung, Lan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.647-652
    • /
    • 2008
  • This paper focused on the application of finite element model updating technique to evaluate the structural properties of the reinforced concrete specimen using the data collected from shaking table tests. The specimen was subjected to six El Centro(NS, 1942) ground motion histories with different Peak Ground Acceleration(PGA) ranging from 0.06g to 0.50g. For model updating, flexural stiffness values of structural members(walls and slabs) were chosen as the updating parameters so that the converged results have direct physical interpretations. Initial values for finite element model were determined from the member dimensions and material properties. Frequency response functions(i.e. transfer functions), natural frequencies and mode shapes were obtained using the acceleration measurement at each floor and given ground acceleration history. The weighting factors were used to account for the relative confidence in different types of inputs for updating(i.e. transfer function and natural frequencies). The constraints based on upper/lower bound of parameters and sensitivity-based constraints were implemented to the updating procedure in this study using standard bounded variable least-squares(BVLS) method. The veracity of the updated finite element model was investigated by comparing the predicted and measured responses. The results indicated that the updated model replicates the dynamic behavior of the specimens reasonably well. At each stage of shaking, severity of damage that results from cracking of the reinforced concrete member was quantified from the updated parameters(i.e. flexural stiffness values).

  • PDF

Finite Element Model Updating and System Identification of Reinforced Concrete Specimen (철근콘크리트 실험체의 시스템 식별과 유한요소 모델 수정)

  • Kim, H.J.;Yu, E.J.;Kim, H.G.;Chang, K.K.;Lee, S.H.;Cho, S.H.;Chung, L.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.725-731
    • /
    • 2008
  • This paper focused on the application of finite element model updating technique to evaluate the structural properties of the reinforced concrete specimen using the data collected from shaking table tests. The specimen was subjected to six El Centre (NS, 1942) ground motion histories with different peak ground acceleration (PGA) ranging from 0.06 g to 0.50 g. For model updating, flexural stiffness values of structural members (walls and slabs) were chosen as the updating parameters so that the converged results have direct physical interpretations. Initial values for finite element model were determined from the member dimensions and material properties. Frequency response functions (i.e. transfer functions), natural frequencies and mode shapes were obtained using the acceleration measurement at each floor and given ground acceleration history. The weighting factors were used to account for the relative confidence in different types of Inputs for updating (j.e. transfer function and natural frequencies) The constraints based on upper/lower bound of parameters and sensitivity-based constraints were implemented to the updating procedure in this study using standard bounded variable least-squares(BVLS) method. The veracity of the updated finite element model was investigated by comparing the predicted and measured responses. The results indicated that the updated model replicates the dynamic behavior of the specimens reasonably well. At each stage of shaking, severity of damage that results from cracking of the reinforced concrete member was quantified from the updated parameters (i.e. flexural stiffness values).

A Study on Vibration Characteristics of Plate Structures Spot-Welded with respect to Area Ratio and Distance Ratio (점용접된 판 구조물의 면적비와 거리비에 따른 진동특성 연구)

  • Han, Dong-Seop;Ahn, Sung-Chan;Ahn, Chan-Woo;Han, Geun-Jo
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.43-49
    • /
    • 2002
  • In this Paper, the mechanical behavior of two reかangular plates spot-welded under free vibration is investigated in detail. The focus of the analysis is to evaluate the effect of thickness of reinforced plates with equivalent thickness. The results of this the investigation are compared with detailed finite element analysis end experiments of the plates spot-welded for various parameters, such as aspect ratio, arm ratio, and distance ratio of spot-welding Points. The conclusion obtained are as followed. 1. The effect thickness due to spot-weld is very large, such as 55% in comparison with area ratio of spot-welding joint is just 4.52%. 2 The effect of thickness with respect to the distance ratio is maximized when the distance ratio is 0.4.

Structural Damage Assessment Based on Model Updating and Neural Network (신경망 및 모델업데이팅에 기초한 구조물 손상평가)

  • Cho, Hyo-Nam;Choi, Young-Min;Lee, Sung-Chil;Lee, Kwang-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.121-128
    • /
    • 2003
  • In recent years, various artificial neural network algorithms are used in the damage assessment of civil infrastructures. So far, many researchers have used the artificial neural network as a pattern classifier for the structural damage assessment but, in this paper, the neural network is used as a structural reanalysis tool not as a pattern classifier. For the model updating using the optimization algorithm, the summation of the absolute differences in the structural vibration modes between undamaged structures and damaged ones is considered as an objective function. The stiffness of structural components are treated as unknown parameters to be determined. The structural damage detection is achieved using model updating based on the optimization techniques which determine the estimated stiffness of components minimizing the objective function. For the verification of the proposed damage identification algorithm, it is numerically applied to a simply supported bridge model.

Numerical Model Updating Based on Univariate Search Method for High Speed Railway Bridges (단변분 탐색법에 기초한 고속철도교량의 수치해석 모델 개선)

  • Park, Dong-Uk;Kim, Nam-Sik;Kim, Sung-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.17-27
    • /
    • 2014
  • Numerical model became one of most important tools for identifying the state of an existing structure in accordance with development of numerical analysis techniques. A numerical model should be updated based on the measured responses from the existing structure to accurately use the model for identifying the state of the bridge and executing numerical experiments. In this study, a new model updating method based on repetition method without a differential function is introduced and applicability for high speed railway bridge is verified with dynamic stability analysis. A fine measurement based on measurement points roaming method was executed with an wireless measurement system for precise dynamic characteristic analysis. The natural frequencies and mode shapes were estimated by correlation analysis and a mode decomposition technique. An initial numerical model was constructed based on design drawings and the model have been updated in accordance with the introduced model updating method. The results from numerical experiment and field test have been compared for verifying the applicability of the model updating method. And the dynamic stability analysis has been executed to verify the usability of the updated numerical model and the model updating method. It seems that the model updating method can be used for various bridges after evaluation of applicability for other type bridges in further studies.

Application of Vision-based Measurement System for Estimation of Dynamic Characteristics on Hanger Cables (행어케이블의 동특성 추정을 위한 영상계측시스템 적용)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.1-10
    • /
    • 2012
  • Along with the development of coasts, islands and mountains, the demand of long-span bridges increases which, in turn, brings forth the construction of cable-supported bridges like suspension and cable-stayed bridges. There are various types of statically indeterminate structures widely applied that supported the main girder with stay cables, main cables, hanger cables with aesthetic structural appearance. As to the cable-supported bridges, the health monitoring of a bridge can be identified by measuring tension force on cable repeatedly. The tension force on cable is measured either by direct measurement of stress of cable using load cell or hydraulic jack, or by vibration method estimating tension force using cable shape and measured dynamic characteristics. In this study, a method to estimate dynamic characteristics of hanger cables by using a digital image processing is suggested. Digital images are acquired by a portable digital camcorder, which is the sensor to remotely measure dynamic responses considering convenient and economical aspects for use. A digital image correlation(DIC) technique is applied for digital image processing, and an image transform function(ITF) to correct the geometric distortion induced from the deformed images is used to estimate subpixel. And, the correction of motion of vision-based measurement system using a fixed object in an image without installing additional sensor can be enhanced the resolution of dynamic responses and modal frequencies of hanger cables.

Experimental Study on Characteristics of Steam Condensation in a Sub-cooled Water Pool (과냉각수조에서 증기응축 특성에 관한 실험적 연구)

  • Kim, Hwan-Yeol;Cho, Seok;Song, Chul-Hwa;Chung, Moon-Ki;Choi, Sang-Min
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.298-308
    • /
    • 1999
  • Experimental study on characteristics of direct contact condensation of steam discharged into a sub-cooled water pool has been performed using five different sizes of horizontal nozzle over a wide range of steam mass fluxes and pool temperatures. Steam condensation phenomena have been observed visually and by taking pictures of steam jets using a high speed video camera. Two different steam jet shapes such as ellipsoidal shape and conical shape were typically observed for a stable steam jet, depending on the steam mass flux and pool temperature. The steam jet expansion ratio and the steam jet length as well as the condensation heat transfer coefficients were determined. The effect of steam mass flux, pool temperature, and nozzle diameter on these parameters were also discussed. Empirical correlations for the steam jet lengths and the condensation heat transfer coefficients as a function of steam mass flux and condensation driving potential were established. The axial and radial temperature distributions in steam jet and in surrounding water were measured. The effect of steam mass flux, pool temperature, and nozzle diameter were also discussed. The condensation regime map, which consists of six regimes such as chugging, transient chugging, condensation oscillation, stable condensation, bubble condensation oscillation, and intermittent oscillation condensation, were established. In addition, the dynamic pressures at the pool wall were measured. The close relation of dynamic pressure and steam condensation mode, which is also dependent on steam mass flux and pool temperature, was found.

  • PDF