• Title/Summary/Keyword: 모듈러 로봇

Search Result 12, Processing Time 0.034 seconds

Design of the Combination and Separation Structures of a Modular Robot (모듈러 로봇의 결합 및 분리 구조 설계)

  • Ryoo, In-Hwan;Lee, Bo-Hee;Khong, Jung-Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3626-3635
    • /
    • 2011
  • The modular robots are a kind of system that was developed to overcome the limitation of the movement for the mobile robot with wheels or legs. In legs type mobile robot case, they are limited for velocity and balance during moving at the uneven terrain. In wheeled mobile robot case, they are also limited to overcome dump, stair and so on. The modular robots can overcome moving limitation because of their transforming ability. However, they are researched not only driving mechanism but also combination mechanism. In this paper we proposed four kinds of unique structure for the combination and separation and also its algorithm. The effectiveness of the structure is verified with building the real structure and taking experiments to the designed modular robot

Study on Kinematics and Dynamics of the Modular Robot (모듈러 로봇의 기구학/동력학에 관한 연구)

  • 강희준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.46-53
    • /
    • 2002
  • In order to overcome the conventional robot's physical limitation to frequent changes in operational requirements, it is quite appealing to modularize its system components and allow them to be combined into various configurations to best suit the needs to a particular application. Several researchers have presented the concept of modular robot. In this paper, the kinematics and dynamics of modular robot are studied, which concretes the concept of modular robot. This study includes the selection of individual module, the definition of their parameters and the development of module based manipulate. analysis software package (MBMAP).

Modular Robot for Promoting Creativity Development in Play and Education (창의력 증진을 위한 놀이 및 교육용 모듈러 로봇 개발)

  • Choi, Joon-Sik;Lee, Bo-Hee;Kim, Jin-Geol
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.572-580
    • /
    • 2014
  • This study deals with reconfigurable modular robot with respect to the compact and capability of representing the various actions for promoting creativity through education and play. Generally modular robot can be designed as a suitable robot that is transformed to various structure by reconstructing each cells, However, there are only few research on the education and play using those robots in the world and still nothing domestically. Unlike the existing modular robots only having a repeating motion, the proposed modular works by individual module such as sound is produced by sound module, wheel is driven by wheel module, LED module controls the visual expression, power is supplied by battery module, bluetooth module for communication, and dynamic motion realization is possible by using joint module. By manipulating the abilities endowed by individual modules, diversity of creative activities is possible and thus made an easy access for children. This study deals with the design of modular robotic by using the variety of different modules to endowed the learning and playing ability. And the study showed the utility of the operating behavior over the actual production and testing.

A Study on Mutual Location Recognition based on LED-RGB colored sensors (LED-RGB 칼라 센서를 이용한 상호위치인식방법 연구)

  • Seo, Yu-Hyun;Bae, Ji-Hye;Son, Byung-Rak;Lee, Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.15-17
    • /
    • 2013
  • 재난방지 및 구호에 사용되는 로봇의 주된 목적은 인간이 직접적으로 접근하기 곤란한 지역에 대한 올바른 상황 정보를 얻기 위함이다. 하지만, 재난지역에서는 통신이 원활하게 접속되지 않거나, 육안을 벗어나는 경우, 원격조정에 의한 통신을 통한 로봇들이 업무지시를 수행해야 하는데 상당한 어려움이 있다. 더군다나 재난지역의 범위가 공간적으로 방대하여 자율적이고, 협동할 수 있으며, 함께 행동할 수 있는 지능적인 로봇의 필요성이 대두되고 있다. 따라서 본 논문에서는 이전 연구에서 개발한 모듈러 기반의 생체로봇을 이용하여 재난지역에서 원활한 업무수행을 할 수 있도록 모듈러 로봇간의 상호인식방법을 연구하고자 한다. 특히, 서로의 위치를 인식하기 위한 방법으로 LED-RGB 센서를 이용한 상호위치인식 방법을 연구하고자 한다.

Design of a Chain-Type Modular Robot (체인형 모둘러 로봇의 설계)

  • Lee, Bo-Hee;Lee, Sang-Kyung;Kong, Jung-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.674-682
    • /
    • 2009
  • The modular robot is one which was developed to get over limit of the space movement for the mobile robot. The chain type robot in particular is connected by series each other and this form expression method is simple and easy to really make a docking method efficiently. However, the related studies were focused on the movement that used to be combination, and the movement of a cell independent mainly does not consist and have a problem to dock only in a direction, not to be connected with all directions. Therefore, we suggested a modular structure for quick, independent movement to solve such a problem and had own autonomy. In addition, we are intended to get some effectiveness for connection mechanism using one locking motor. In this paper, we dealt with the design for the mechanical and electrical points and docking algorithm including communication method. All of the structure is verified with real action experiment through the shape expressions of various application platform.

Development of a Robotic Surgery System using General Purpose Robotic Arm and Modular Haptic Controller (범용 로봇팔과 모듈러 햅틱 컨트롤러를 사용한 수술 로봇 시스템 개발)

  • Yi, Jae-Bong;Jin, Sangrok;Yi, Seung-Joon
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.131-138
    • /
    • 2020
  • This paper proposes a low-cost robotic surgery system composed of a general purpose robotic arm, an interface for daVinci surgical robot tools and a modular haptic controller utilizing smart actuators. The 7 degree of freedom (DOF) haptic controller is suspended in the air using the gravity compensation, and the 3D position and orientation of the controller endpoint is calculated from the joint readings and the forward kinematics of the haptic controller. Then the joint angles for a general purpose robotic arm is calculated using the analytic inverse kinematics so that that the tooltip reaches the target position through a small incision. Finally, the surgical tool wrist joints angles are calculated to make the tooltip correctly face the desired orientation. The suggested system is implemented and validated using the physical UR5e robotic arm.

Operation and performability analysis of modular cells (모듈러 셀의 운영과 수행성 해석)

  • Heo, Gyeon;Jang, Seok-Ho;Jung, Hyun-Ho;Lee, Sang-Moon;Woo, Gwang-Bang;Kim, Hak-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1263-1266
    • /
    • 1997
  • In a fault-tolerant modern manufacturing systms characterized by the configuration, in which automated redundant machines prone to unexpected failures are interconnected with other complex subsystems such as AGV's, robots, computer control systems to produce complete parts, faulures together with repairs and reconfigurations should be considered as the three basic events to be modeled for computing the performance of manufacturing systems. In this papre, transient analysis is applied to modular cell manufacturing systems form a performability viewpoint whose modeling adantage is that various performanc e measures can be evaluated compositely in the context of application. The hypothertical modular cells are modeled firstly with hybrid decomposition method and availability measures as special cases of performability are computed and comments on performabililty modeling analysis are mentioned.

  • PDF

Design of Self-Reconfigurable Kinematics and Control Engine for Modular Robot (모듈러 로봇의 작업 적응성을 위한 자가 재구성 제어 엔진)

  • Do, HyunMin;Choi, Tae-Yong;Park, DongIl;Kim, DooHyeong;Son, Youngsu
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.270-276
    • /
    • 2016
  • This paper proposes a design methodology of self-reconfigurable kinematics and control engine for modular and reconfigurable robots. A modular manipulator has been proposed to meet the requirement of task adaptation in versatile needs for service and industrial robot area and the function of self-reconfiguration is required to extend the application of modular robots. Kinematic and dynamic contexts are extracted from the module and assembly information and related codes are automatically generated including controller. Thus a user can easily build and use a modular robot without professional knowledge. Simulation results are presented to verify the validity of the proposed method.

Modular Crawler with Adjustable Number of Legs and Performance Evaluation of Hexapod Robot (다리 수 조절이 가능한 모듈러 크롤러의 설계 및 6족 로봇의 주행 성능 평가)

  • Yim, Sojung;Baek, Sang-Min;Lee, Jongeun;Chae, Soo-Hwan;Ryu, Jae-Kwan;Jo, Yong-Jin;Cho, Kyu-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.278-284
    • /
    • 2019
  • Legged locomotion has high mobility on irregular surfaces by touching the ground at discrete points. Inspired by the creature's legged locomotion, legged robots have been developed to explore unstructured environments. In this paper, we propose a modular crawler that can easily adjust the number of legs for adapting the environment that the robot should move. One module has a pair of legs, so the number of legs can be adjusted by changing the number of modules. All legs are driven by a single driving motor for simple and compact design, so the driving axle of each module is connected by the universal joint. Universal joints between modules enable the body flexion for steering or overcoming higher obstacles. A prototype of crawler with three modules is built and the driving performance and the effect of module lifting on the ability to overcome obstacles are demonstrated by the experiments.

Conceptional Approach for Assembly Reconfiguration of Papering Robot Modules (선체 수직 외벽 Papering 용 로봇 모듈의 조합 최적설계의 개념적 접근)

  • Chung W.J.;Kim S.H.;Kim K.K.;Kim H.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.2015-2018
    • /
    • 2005
  • In this paper, we are willing to prepare the reasonable optimization, Combinatorial Optimization and Genetic Algorithm. Thus we define position status of end-effect (or terminative link module) using promised form, (G, M(G), A(G), and so on.). For this preparing step, the reorganizing procedure of Link and Joint Module is necessary, like as enumerating the kinematically identical assembly group of several links and joints. Thus, we draw a G, directed graph in a first step. Because, directed graph contains the path information between adjacent Link Module and Joint Module. From the directed graph,G, we can incite the Incidence Matrix, M(G). The incidence matrix, M(G), contains the contact information of the Link (Joint) Module and the type of Link (Joint). At the end of this paper, we generalize the modular information as a matrix form, A(G). From this matrix, we can make a population of assembly status. That is the finial output of this paper.

  • PDF