• Title/Summary/Keyword: 모듈러 곱셈

Search Result 80, Processing Time 0.026 seconds

Development of Hardware Modules for Montgomery Modular Multipliers based on 32-bit multipliers (32 비트 곱셈기에 기반한 몽고메리 모듈러 곱셈기 하드웨어 모듈 개발)

  • 양인제;김동규
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.162-165
    • /
    • 2003
  • RSA 등의 공개키 암호화 시스템에서는 매우 큰 정수에 대해서 모듈러 멱승을 수행한다. 그러므로 모듈러 멱승을 효율적으로 구현하기 위하여 많은 연구가 진행되어 왔다. 모듈러 멱승을 소프트웨어적으로 구현할 경우 시간적인 제약을 극복하지 못하므로, 이를 하드웨어로 구현하려는 연구도 많이 이루어지고 있는 추세이다. 몽고메리 곱셈 알고리즘은 비용이 많이 드는 모듈러 연산을 효율적으로 처리하고 있으므로 하드웨어적 구현에 현재 널리 쓰이고 있다. 몽고메리 곱셈 알고리즘은 내부적으로 당연히 곱셈연산을 주로 사용하기 때문에, 어떤 곱셈기를 사용하느냐가 성능에 영향을 미치게 한다. 본 논문에서는 몽고메리 곱셈기를 다양한 32비트 곱셈기를 적용해 보고, 성능 및 면적을 측정하였다. 이러한 측정 결과를 토대로 특정 응용에 알맞은 32비트 곱셈기를 적절히 선택하여 설계할 수 있을 것으로 기대한다.

  • PDF

A High Performance Modular Multiplier for ECC (타원곡선 암호를 위한 고성능 모듈러 곱셈기)

  • Choe, Jun-Yeong;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.961-968
    • /
    • 2020
  • This paper describes a design of high performance modular multiplier that is essentially used for elliptic curve cryptography. Our modular multiplier supports modular multiplications for five field sizes over GF(p), including 192, 224, 256, 384 and 521 bits as defined in NIST FIPS 186-2, and it calculates modular multiplication in two steps with integer multiplication and reduction. The Karatsuba-Ofman multiplication algorithm was used for fast integer multiplication, and the Lazy reduction algorithm was adopted for reduction operation. In addition, the Nikhilam division algorithm was used for the division operation included in the Lazy reduction. The division operation is performed only once for a given modulo value, and it was designed to skip division operation when continuous modular multiplications with the same modulo value are calculated. It was estimated that our modular multiplier can perform 6.4 million modular multiplications per second when operating at a clock frequency of 32 MHz. It occupied 456,400 gate equivalents (GEs), and the estimated clock frequency was 67 MHz when synthesized with a 180-nm CMOS cell library.

Bit-slice Modular multiplication algorithm (비트 슬라이스 모듈러 곱셈 알고리즘)

  • 류동렬;조경록;유영갑
    • The Journal of Information Technology
    • /
    • v.3 no.1
    • /
    • pp.61-72
    • /
    • 2000
  • In this paper, we propose a bit-sliced modular multiplication algorithm and a bit-sliced modular multiplier design meeting the increasing crypto-key size for RSA public key cryptosystem. The proposed bit-sliced modular multiplication algorithm was designed by modifying the Walter's algorithm. The bit-sliced modular multiplier is easy to expand to process large size operands, and can be immediately applied to RSA public key cryptosystem.

  • PDF

Montgomery Multiplier Supporting Dual-Field Modular Multiplication (듀얼 필드 모듈러 곱셈을 지원하는 몽고메리 곱셈기)

  • Kim, Dong-Seong;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.736-743
    • /
    • 2020
  • Modular multiplication is one of the most important arithmetic operations in public-key cryptography such as elliptic curve cryptography (ECC) and RSA, and the performance of modular multiplier is a key factor influencing the performance of public-key cryptographic hardware. An efficient hardware implementation of word-based Montgomery modular multiplication algorithm is described in this paper. Our modular multiplier was designed to support eleven field sizes for prime field GF(p) and binary field GF(2k) as defined by SEC2 standard for ECC, making it suitable for lightweight hardware implementations of ECC processors. The proposed architecture employs pipeline scheme between the partial product generation and addition operation and the modular reduction operation to reduce the clock cycles required to compute modular multiplication by 50%. The hardware operation of our modular multiplier was demonstrated by FPGA verification. When synthesized with a 65-nm CMOS cell library, it was realized with 33,635 gate equivalents, and the maximum operating clock frequency was estimated at 147 MHz.

A 521-bit high-performance modular multiplier using 3-way Toom-Cook multiplication and fast reduction algorithm (3-way Toom-Cook 곱셈과 고속 축약 알고리듬을 이용한 521-비트 고성능 모듈러 곱셈기)

  • Yang, Hyeon-Jun;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1882-1889
    • /
    • 2021
  • This paper describes a high-performance hardware implementation of modular multiplication used as a core operation in elliptic curve cryptography. A 521-bit high-performance modular multiplier for NIST P-521 curve was designed by adopting 3-way Toom-Cook integer multiplication and fast reduction algorithm. Considering the property of the 3-way Toom-Cook algorithm in which the result of integer multiplication is multiplied by 1/3, modular multiplication was implemented on the Toom-Cook domain where the operands were multiplied by 3. The modular multiplier was implemented in the xczu7ev FPGA device to verify its hardware operation, and hardware resources of 69,958 LUTs, 4,991 flip-flops, and 101 DSP blocks were used. The maximum operating frequency on the Zynq7 FPGA device was 50 MHz, and it was estimated that about 4.16 million modular multiplications per second could be achieved.

A Scalable Architecture of Montgomery Multiplier on GF(p) (GF(p)상의 Scalable한 몽고메리 곱셈기)

  • 이광진;장용희;권용진
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.382-384
    • /
    • 2004
  • 최근 인터넷의 발달과 함께 인터넷 상에서의 데이터 보안에 대한 요구가 매우 증가되고 있다. 그래서 공개키 또는 비밀키 알고리즘을 사용하여 데이터 보안을 해결하고 있다. 대부분의 공개키 알고리즘은 모듈러 연산들을 기반으로 살고 있으며 이 중 복잡도가 가장 높은 모듈러 멱승 연산은 모듈러 곱셈 연산을 반복 수행하여 계산된다. 그래서 모듈러 곱셈연산을 효율적으로 계산하기 위한 많은 방법들이 제안되어 왔으며 하드웨어 구현 시 속도와 효율성 문제로 몽고메리 곱셈기에 대한 연구가 주목을 받아 왔다. 현재 몽고메리 곱셈 알고리즘을 이용한 곱셈기는 대부분이 성능과 면적만을 고려한 구조로 보안성 향상을 위해 입력 데이터의 비트수 증가 시 곱셈기의 구조 변경이 요구된다. 따라서 본 논문에서는 비트수 길이가 변하더라도 곱셈기 구조는 변함이 없는 GF(p)상에서의 Scalable한 몽고메리 곱셈기 구조를 제안한다. Sealable한 곱셈기의 구조는 FPGA와 같이 메모리를 포함하는 하드웨어 플랫폼에 적합하다. 제안된 구조는 Xilinx FPGA를 이용하여 하드웨어로 구현하며 ModelSim Tool을 통해 기능 및 타이밍 시뮬레이션을 수행한다.

  • PDF

Efficient Modular Multiplication for 224-bit Prime Field (224비트 소수체에서 효율적인 모듈러 곱셈)

  • Chang, Nam Su
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.515-518
    • /
    • 2019
  • The performance of Elliptic Curves Cryptosystem(ECC) is dominated by the modular multiplication since the elliptic curve scalar multiplication consists of the modular multiplication in projective coordinates. In this paper, we propose a new method that combines the Karatsuba-Ofman multiplication method and a new modular reduction algorithm in order to improve the performance of the modular multiplication for NIST p224 in the FIPS 186-4 standard. The proposed method leads to a running time improvement for computing the modular multiplication about 25% faster than the previous methods. The results also show that the method can reduce the arithmetic complexity by half when compared with traditional implementations on the standpoint of the modular reduction.

A Design of 256-bit Modular Multiplier using 3-way Toom-Cook Multiplication Algorithm and Fast Reduction Algorithm (3-way Toom-Cook 곱셈 알고리듬과 고속 축약 알고리듬을 이용한 256-비트 모듈러 곱셈기 설계)

  • Yang, Hyeon-Jun;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.223-225
    • /
    • 2021
  • Modular multiplication is a key operation for point scalar multiplication of ECC, and is the most important factor affecting the performance of ECC processor. This paper describes a design of a 256-bit modular multiplier that adopts 3-way Toom-Cook multiplication algorithm and modified fast reduction algorithm. One 90-bit multiplier and three 264-bit adders were used to optimize the hardware size and the number of clock cycles required. The modular multiplier was verified by implementing it using Zynq UltraScale+ MPSoC device and the modular multiplication operation takes 15 clock cycles.

  • PDF

A Design of Efficient Modular Multiplication based on Montgomery Algorithm (효율적인 몽고메리 모듈러 곱셈기의 설계)

  • Park, Hye-Young;Yoo, Kee-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.1003-1006
    • /
    • 2004
  • 본 논문에서는 몽고메리 모듈러 곱셈(Montgomery Modular Multiplication) 알고리즘을 이용하여 효율적인 모듈러 곱셈기를 제안한다. 본 논문에서 제안한 곱셈기는 프로그램 가능한 셀룰라 오토마타(Programmable Cellular Automata, PCA)를 기반의 구조로 설계되어 하드웨어 복잡도를 줄이고, 곱셈시 몽고메리 알고리즘을 이용하여 일반적인 나눗셈 없이 모듈러 연산을 수행하여 시간 복잡도를 최소화 한다. 제안된 곱셈기는 시간적, 공간적인 면에서 간단하고 효과적으로 구성되어 지수연산을 위한 하드웨어의 하부구조나 오류 수정 코드(Error Correcting Code)의 연산에서 효율적으로 이용될 수 있을 것이다.

  • PDF

Graph Modeling Method for Efficient Computation of Modular Exponentiation (효율적인 모듈러 멱승 연산을 위한 그래프 모델링 방법)

  • Park, Chi-Seong;Kim, Ji-Eun;Kim, Dong-Kyue
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.898-900
    • /
    • 2005
  • 모듈러 멱승은 양수 x, E, N에 대하여 $x^Emod$ N로 정의된다. 모듈러 멱승 연산은 대부분의 공개키 암호화 알고리즘과 전자서명 프로토콜에서 핵심적인 연산으로 사용되고 있으므로, 그 효율성은 암호 프로토콜의 성능에 직접적인 영향을 미친다. 따라서 모듈러 멱승 연산에 필요한 곱셈 수를 감소시키기 위하여, 슬라이딩 윈도우를 적용한 CLNW 방법이나 VLNW 방법이 가장 널리 사용되고 있다. 본 논문에서는 조합론(combinatorics)에서 많이 응용되는 그래프 모델을 모듈러 멱승 연산에 적용할 수 있음을 보이고, 일반화된 그래프 모델을 통하여 VLNW 방법보다 더 적은 곱셈 수로 모듈러 멱승을 수행하는 방법을 설명한다. 본 논문이 제안하는 방법은 전체 곱셈 수를 감소시키는 새로운 블록들을 일반화된 그래프 모델의 초기 블록 테이블에 추가할 수 있는 초기 블록 테이블의 두 가지 확장 방법들로써, 접두사 블록의 확장과 덧셈 사슬 블록의 확장이다. 이 방법들은 새로운 블록을 초기 블록 테이블에 추가하기 위해 필요한 곱셈의 수와 추가한 뒤의 전체 곱셈 수를 비교하면서 초기 블록 테이블을 제한적으로 확장하므로, 지수 E에 non-zero bit가 많이 나타날수록 VLNW 방법에 비해 좋은 성능을 보이며 이는 실험을 통하여 검증하였다.

  • PDF