• Title/Summary/Keyword: 모델응축

Search Result 126, Processing Time 0.035 seconds

Analytical Modeling of a Loop Heat Pipe with a Flat Evaporator by Applying Thin-Film Theory (평판형 증발부를 갖는 루프히트파이프에 대해 박막이론을 적용한 해석적 모델링)

  • Jung, Eui-Guk;Boo, Joon-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1079-1085
    • /
    • 2010
  • A steady-state analytical model was presented for a loop heat pipe (LHP) with an evaporator that has a flat geometry. On the basis of a series of reviews of the relevant literature, a sequence of calculations was proposed to predict the temperatures and pressures at each important part of the LHP: the evaporator, liquid reservoir (compensation chamber), liquid line, vapor line, and condenser. The analysis of the evaporator, which is the only part in the LHP that has a capillary structure, was emphasized. Thin-film theory is applied to account for the pressure and temperature in the region adjacent to the liquid-vapor interface in the evaporator. The present study introduced a unique method to estimate the liquid temperature at the interface. Relative freedom was assumed in the configuration of a condenser with a simplified liquid-vapor interface. Our steady-state model was validated by experimental results available in the literature. The relative error was within 3% on the absolute temperature scale, and reasonable agreement was obtained.

Adsorption Characteristics of Nitrogen in Carbonaceous Micropore Structures with Local Molecular Orientation (국부분자배향의 탄소 미세기공 구조에 대한 질소의 흡착 특성)

  • Seo, Yang Gon
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.249-257
    • /
    • 2022
  • The adsorption equilibria of nitrogen on a region of nanoporous carbonaceous adsorbent with local molecular orientation (LMO) were calculated by grand canonical Monte Carlo simulation at 77.16 K. Regions of LMO of identical size were arranged on a regular lattice with uniform spacing. Microporosity was predominately introduced to the model by removing successive out-of-plane domains from the regions of LMO and tilting pores were generated by tilting the basic structure units. This pore structure is a more realistic model than slit-shaped pores for studying adsorption in nanoporous carbon adsorbents. Their porosities, surface areas, and pore size distributions according to constrained nonlinear optimization were also reported. The adsorption in slit shaped pores was also reported for reference. In the slit shaped pores, a clear hysteresis loop was observed in pores of greater than 5 times the nitrogen molecule size, and in capillary condensation and reverse condensation, evaporation occurred immediately at one pressure. In the LMO pore model, three series of local condensations at the basal slip plane, armchair slip plane and interconnected channel were observed during adsorption at pore sizes greater than about 6 times the nitrogen molecular size. In the hysteresis loop, on the other hand, evaporation occurred at one or two pressures during desorption.

Development of Gas/Particle Transport Mechanism using Modal Dynamics Approach with Global Equilibrium Method (Modal Dynamics 방법과 광역적 평형 방법을 이용한 기체/입자간 물질이동모델 개발)

  • 정창훈;김용표;이규원
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.215-216
    • /
    • 2000
  • 대기 중에 존재하는 입자의 생성 및 변화를 모델링 하는데 있어서 가장 중요한 요소는 응축/휘발 (condensation/evaporation)과 같은 기체/입자간의 상호 과정을 어떻게 모사 하느냐 하는 것이다. 일반적으로 지금까지의 연구는 입자와 가스상의 농도가 순간적으로 평형을 이룬다고 가정해 왔으나 실제 대기상의 입자는 비 평형(non-equilibrium)상태의 응축/휘발 과정을 따르는 것으로 알려져 왔다. (중략)

  • PDF

The effect of steam condensation on the behavior of an hygroscopic aerosol (흡습성 에어로졸의 거동에 미치는 수증기 응축의 영향)

  • Park, J.W.
    • Journal of ILASS-Korea
    • /
    • v.3 no.3
    • /
    • pp.14-22
    • /
    • 1998
  • The growth by steam condensation of an hygroscopic aerosol is investigated using the condensation rate model which has been derived from the mass and heat transfer equations. The present model accounts for both the solute and Kelvin effects. When the hygroscopicity is considered, condensation can occur on hygroscopic seed particles even under subsaturated steam conditions. This study focuses on the effect of hygroscopicity on the evolution of the particle size distribution and decay of the total aerosol concentration. It is found that hygroscopicity causes the particle size distribution to rapidly move upward even in a very short time, resulting in substantially higher decay of the total aerosol concentration than the case without considering hygroscopicity.

  • PDF

IRWST 배관내의 열수력적 현상 모델링

  • 김상녕;김융석;고종현
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.596-602
    • /
    • 1998
  • 한국의 차세대 원자로 (Korean Next Generation Reactor; KNGR)에 처음 적용되는 격납건물내에 설치된 재장전수조 (In-Containment Refueling Water Storage Tank; IRWST)는 기존 재장전수조의 기능외에 주입모드에서 재순환 모드를 전환생략, 일차계통으로 방출된 고온, 고압 냉각수의 응축 및 냉각 격납용기 방사능 오염방지, 원자로 동공층수 등 여러 가지 추가 기능을 가진 한층 진보된 설계개념이다. 발전소 천이사고 시 발생하는 Pipe Clearing, 응축진동 현상(Condensation Oscillations), Chugging 등의 열수력 현상들이 방출증기의 유동 및 가속도와 관련해 항력과 응력, 압력진동 등을 일으켜 IRWST 구조물에 영향을 미칠 수 있기 때문에 IRWST를 처음으로 시도하는 우리 나라로서는 이와 관련된 제반현상에 대한 심도 깊은 연구가 요구된다. 따라서 본 연구에서는 원자력 발전소 과도로 인한 가압기 안전밸브(Pressurizer Safety Valve) 또는 안전감압밸브(Safety Depressurization Valve) 작동시 IRWST로 방출되는 유체로 야기되는 하중 예측 모델을 기존의 BWR의 응축수조(suppression Pool)에서 일어나는 각종 현상을 토대로 이론적으로 체계적으로 유도하여 이를 비교, 분석하였다.

  • PDF

Process Design and Economic Evaluation of Condensate Recycling Process for Steam Consumption Reduction (스팀 사용 저감을 위한 응축수 재활용 공정설계 및 경제성 평가)

  • Kim, Jinuk;Choi, Yeongryeol;Cho, Hyungtae;Kim, Junghwan
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.660-667
    • /
    • 2020
  • This study focused on the epoxy resin production process, which uses the steam of 155 ℃ or higher as a heat source, and discards all condensate generated. A part of the process is operated at low temperatures of 70 ℃ or below, thus there are opportunities to reduce the steam consumption by recycling wasted condensate as a heat source for the low temperature section of process. In this study, we developed process models that can reduce steam by recovering waste heat through recycling condensate and conducted a case study to find an optimal condensate recycling system. Three different process designs were proposed and economic evaluations were performed by comparing annual capital costs and steam savings in each case. Finally, an annual steam consumption of the low-temperature section could be reduced by up to 67.6%, which could also bring an additional economic benefit of 522.1 million won/yr.

Analysis on condensation heat transfer and pressure drop to develop design program for plate heat exchangers (판형열교환기 설계프로그램 개발을 위한 응축열전달 및 압력강하 분석)

  • Ko, Jea-Hyun;Song, Young-Ho;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.376-382
    • /
    • 2014
  • The purpose of this study is to get the formulas of condensation heat transfer coefficient and pressure drop about the water to develop design program for plate type heat exchangers. The single phase flow of cold side was calculated with the correlation of Ko. Condensation heat transfer coefficient model proposed by Annaiev was used and Lockhart model was used to analyze the pressure drop. The calculation algorithm was proposed to calculate heat transfer rate and pressure drop simultaneously. The prediction errors remained within 20% compared to the commercial code in the working range of the plate heat exchangers.

Condensation Heat Transfer Coefficient in Horizontal Stratified Cocurrent Flow of Steam and Cold Water (물-증기 동방향 성층이상 유동에서의 응축 열전달 계수)

  • 김효정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.618-624
    • /
    • 1986
  • Some studies on direct-contact condensation in cocurrent stratified flow of steam and subcooled water were reviewed. Several approaches have been performed to develop the condensation heat transfer coefficient relationshipo. The local Nusselt number is correlated in terms of the local water Reynolds and Prandtl numbers as well as the steam Froude number. In addition, a turbulence-centered model, developed principally for gas absorption in several geometries, is modified by using calculated interfacial paramters for the turbulent velocity and length scales. These approaches result in a fairly good agreement with the data, whereas, the turbulence-centered model is here rexcommened since it is based on the turbulent properties which may be closely related to the condensation phenemena.