DOI QR코드

DOI QR Code

스팀 사용 저감을 위한 응축수 재활용 공정설계 및 경제성 평가

Process Design and Economic Evaluation of Condensate Recycling Process for Steam Consumption Reduction

  • 김진욱 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 최영렬 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 조형태 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 김정환 (한국생산기술연구원 친환경재료공정연구그룹)
  • Kim, Jinuk (Green Materials and Processes R&D Group, Korea Institute of Industrial Technology) ;
  • Choi, Yeongryeol (Green Materials and Processes R&D Group, Korea Institute of Industrial Technology) ;
  • Cho, Hyungtae (Green Materials and Processes R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Junghwan (Green Materials and Processes R&D Group, Korea Institute of Industrial Technology)
  • 투고 : 2020.10.05
  • 심사 : 2020.11.16
  • 발행 : 2020.12.10

초록

본 연구의 대상은 에폭시 레진 생산 공정으로 155 ℃ 이상의 고온 스팀을 열원으로 사용하고 있으며 공정에서 생성되는 응축수는 전량 버려지고 있다. 공정의 일부는 70 ℃ 이하의 저온으로 운전되므로 버려지는 응축수를 재활용하여 저온 공정의 열원으로 사용한다면 스팀 사용량 저감이 가능하다. 따라서 본 연구에서는 응축수 재활용을 통해 폐열을 회수하여 스팀 사용량을 저감할 수 있는 공정을 제시하고 모델을 개발하였다. 최적의 응축수 재활용 공정을 찾기 위한 사례연구를 진행하였고, 각 사례의 연간 자본 비용 및 스팀 저감 비용을 비교하여 경제성 평가를 실시하였다. 제안된 공정에서 응축수 회수를 통해 저온 공정에 사용하는 스팀 사용량을 연간 최대 67.6%까지 저감하여 최대 연 522.1 백만원의 추가 수익의 확보가 가능함을 확인하였다.

This study focused on the epoxy resin production process, which uses the steam of 155 ℃ or higher as a heat source, and discards all condensate generated. A part of the process is operated at low temperatures of 70 ℃ or below, thus there are opportunities to reduce the steam consumption by recycling wasted condensate as a heat source for the low temperature section of process. In this study, we developed process models that can reduce steam by recovering waste heat through recycling condensate and conducted a case study to find an optimal condensate recycling system. Three different process designs were proposed and economic evaluations were performed by comparing annual capital costs and steam savings in each case. Finally, an annual steam consumption of the low-temperature section could be reduced by up to 67.6%, which could also bring an additional economic benefit of 522.1 million won/yr.

키워드

참고문헌

  1. K. I. Han and D. H. Cho, A study on the steam boiler with high compression waste heat recovery system, J. Korean Soc. Fish. Ocean. Technol., 53, 302-307 (2017). https://doi.org/10.3796/KSFT.2017.53.3.302
  2. Y. J. Kim, C. W. Jung, Y. J. Lee, S. S. Kim, and Y. T. Kang, Performance improvement of Cured-In-Place-Pipe(CIPP) process by boiler waste heat recovery, Korean J. Air-Cond. Refrig. Eng., 25, 164-167 (2013). https://doi.org/10.6110/KJACR.2013.25.3.164
  3. K. S. Koo, S. K. Bang, I. H. Seo, S. Y. Lee, E. S. Jeong, and C. S. Yi, A study on the engineering design for 250kW-grade waste gas heat recovery, J. Korean Soc. Manuf. Proc. Engineers, 18, 90-95 (2019). https://doi.org/10.14775/ksmpe.2019.18.7.090
  4. J. W. Lee, M. Y. Kim, J. H. Chi, S. M. Kim, and S. I. Park, A study of coal gasification process modeling, Trans. Korean Hydrogen New Energ. Soc., 21, 425-434 (2010).
  5. I. K. Lee, S. S. Cho, S. J. Lee, and I. Moon, Case studies for SMR natural gas liquefaction plant by capacity in small scale gas wells through cost analysis, J. Korean Inst. Gas, 20, 46-51 (2016).
  6. J. H. Lim, Y. R. Choi, G. Y. Kim, H. J. Song, and J. H. Kim, Modeling of wet flue gas desulfurization process for utilization of low-grade limestone, Korean Chem. Eng. Res., 57, 743-748 (2019). https://doi.org/10.9713/kcer.2019.57.5.743
  7. Steam Characteristics, website, https://www.thermexcel.com/english/tables/vap_eau.htm, Accessed 2nd, Sep. 2020.
  8. H. P. Loh, Process equipment cost estimation final report, National Energy Technoloy Laboratory, 54 (2002).
  9. Woo, S. K. and Jung, Y. S., Development and application of cost adjustment factor database for an approximate cost estimating system, KSCE J. Civ. Eng., 21, 659-708 (2001). https://doi.org/10.1007/s12205-016-0395-7
  10. H. Silla, CHEMICAL PROCESS ENGINEERING Design and Economics, 71, Marcel Dekker Inc., NY, USA (2003).
  11. J. M. N. Van Kasteren, and A. P. Nisworo, A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification, Resour. Conserv. Recycl., 50, 442-458 (2007). https://doi.org/10.1016/j.resconrec.2006.07.005
  12. O. V. Okoro and F. D. Faloye, Comparative assessment of thermo-syngas fermentative and liquefaction technologies as waste plastics repurposing strategies, AgriEngineering, 2, 378-392 (2020). https://doi.org/10.3390/agriengineering2030026
  13. J. W. Byun and J. H. Han, Process development and economic evaluation for catalytic conversion of furfural to tetrahydrofurfuryl alcohol, Korean Chem. Eng. Res., 55, 606-617 (2017).
  14. Rate of Exchange, KOSIS, https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_2KAA811, Accessed 2nd, Sep. 2020.
  15. Trand of Market Interest Rates, website, http://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=1073, Accessed 2nd, Sep. 2020.
  16. J. H. Jo, J. S. Jeong, and J. H. Bae, Economic feasibility and impact analysis of cellulose bioethanol production in Korea, New Renew. Energy, 12, 149-155 (2016). https://doi.org/10.7849/ksnre.2016.9.12.3.149