본 논문은 개체명 인식을 위해 CRF 모델을 이용해 분류를 수행했다. 개체명 후보를 개체명으로 식별에서 중의성 문제가 필요하다. 본 논문에서는 이러한 중의성 문제 해결을 위해 학습 셋으로부터 패턴과 형태적 특성을 고려해 개체명 후보를 최대로 선택하고 선택된 개체명 후보의 중의성과 정확도를 높이기 위해 주변의 문맥 자질과 분별 확률 모델인 CRF를 이용해 중의성 문제를 해결한다.
신경회로망 설계 및 모델선택의 목표는 최적의 구조를 가지는 일반화 성능이 우수한 네트워크를 구성하는 것이다. 하지만 학습데이타에는 노이즈(noise)가 존재하고, 그 수도 충분하지 않기 때문에 최종적으로 표현하고자 하는 진확률 분포와 학습 데이타에 의해 표현되는 경험확률분포(empirical probability density) 사이에는 차이가 발생한다. 이러한 차이 때문에 신경회로망을 학습데이타에 대하여 과다하게 적합(fitting)시키면, 학습데이타만의 확률분포를 잘 추정하도록 매개변수들이 조정되어 버리고, 진확률 분포로부터 멀어지게 된다. 이러한 현상을 과다학습이라고 하며, 과다학습된 신경회로망은 학습데이타에 대한 근사는 우수하지만, 새로운 데이타에 대한 예측은 떨어지게 된다. 또한 신경회로망의 복잡도가 증가 할수록 더 많은 매개변수들이 노이즈에 쉽게 적합되어 과다학습 현상은 더욱 심화된다. 본 논문에서는 통계적인 관점을 바탕으로 신경회로망의 일반화 성능을 향상시키는 신경회로 망의 설계 및 모델 선택의 통합적인 프로세스를 제안하고자 한다. 먼저 학습의 과정에서 적응적 정규화가 있는 자연기울기 학습을 통해 수렴속도의 향상과 동시에 과다학습을 방지하여 진확률 분포에 가까운 신경회로망을 얻는다. 이렇게 얻어진 신경회로망에 자연 프루닝(natural pruning) 방법을 적용하여 서로 다른 크기의 후보 신경회로망 모델을 얻는다. 이러한 학습과 복잡도 최적화의 통합 프로세스를 통하여 얻은 후보 모델들 중에서 최적의 모델을 베이시안 정보기준에 의해 선택함으로써 일반화 성능이 우수한 최적의 모델을 구성하는 방법을 제안한다. 또한 벤치마크 문제를 이용한 컴퓨터 시뮬레이션을 통하여, 제안하는 학습 및 모델 선택의 통합프로세스의 일반화 성능과 구조 최적화 성능의 우수성을 검증한다.
고차원 데이터에서는 데이터마이닝 기법 중에서 특징 선택은 매우 중요한 과정이 되었다. 그러나 전통적인 단일 특징 선택방법은 더 이상 효율적인 특징선택 기법으로 적합하지 않을 수 있다. 본 논문에서 우리는 고차원 데이터에 대한 효율적인 특징선택을 위하여 혼합형 특징선택 기법을 제안하였다. 본 논문에서는 KNHANES 데이터에 제안한 혼합형 특징선택기법을 적용하여 분류한 결과 기존의 분류기법을 적용한 모델보다 5% 이상의 정확도가 향상되었다.
작물 수확량 예측은 토양, 비, 기후, 대기 및 이들의 관계와 같은 다양한 측면으로 인해 다국적 식사와 강력한 수요에 필수적이며, 기후 변화는 농업 생산량에 영향을 미친다. 본 연구에서는 온도, 강수량, 습도 등의 데이터 세트를 운영한다. 현재 연구는 농부와 농업인을 지원하기 위해 다양한 분류기를 사용한 기능 선택에 중점을 두고 있다. 특징 선택 접근법을 활용한 작물 수확량 추정은 96% 정확도를 나타내었다. 특징 선택은 기계학습 모델의 성능에 영향을 미친다. 현재 그래프 분류기의 성능은 81.5%를 나타내며, 특징 선택이 없는 Random Forest 회귀 분석은 78%의 정확도를 나타냈다. 또한, 특징 선택이 없는 의사결정 트리 회귀 분석은 67%의 정확도를 유지하였다. 본 논문은 제시된 10가지 알고리즘을 대상으로 특징 선택 중요성에 대한 실험결과를 나타내었다. 이러한 결과는 작물 분류 연구에 적합한 모델을 선택하는 데 도움이 될 것으로 기대된다.
최근 급증하는 교통 혼잡으로 인해 시간적/물질적 손실이 크게 발생하고 있다. 이러한 교통난 해소는 시설투자만으로는 근본적인 해결책이 될 수 없다는 판단 하에 지난 수년간 보다 정확한 교통량을 예측하기 위해 시계열 기반의 다양한 교통량 예측 모델들이 개발 되어 왔다. 그러나 시계열 기반의 모델들은 회귀분석을 통해 과거 교통량을 분석하고 과거의 교통패턴이 미래에도 지속적으로 연장된다는 가정 하에 연구되었기 때문에 실시간으로 급변하는 불규칙한 교통 패턴에 대한 예측의 신뢰성을 떨어트린다. 또한 시계열 기반의 예측 기법은 어떠한 회귀분석 모델을 사용하는지에 따라 성능의 차이가 많이 나타나기 때문에 회귀분석 모델 선택이 중요하다. 이러한 제약을 극복하기 위해 본 논문에서는 은닉 마르코프 모델(Hidden Markov model)을 이용해 동적인 교통 패턴에 따라 현재 상황에 맞는 회귀분석 모델을 선택하는 신뢰도 높은 교통량 예측 시스템을 제안한다.
본 연구는 교육기반 작업치료 서비스 전문가가 사용하는 중재모델, 중재장소와 중재시간, 중재모델 선택시 고려사항, 중재모델과 중재 영역 간에 상관관계를 알아보기 위해 특수교육지원센터에 근무하고 있는 작업치료사와 작업치료를 전공한 치료교사를 대상으로 설문지를 발송하고, 회수한 총 46부를 분석에 사용하였다. 연구결과 첫째, 학생의 수행 기술을 향상시키는데 초점을 둔 개별치료 모델을 자주 사용하였다. 둘째, 아동수행을 향상시키는 중재모델과 다른 팀 전문가에게 작업치료의 중요성을 인식시킬 수 있는 모델로 개별 치료를 선택하였다. 셋째, 중재모델을 선택하는 요인으로 수행구성요소의 결함과 팀 책임자의 마인드를 들었다. 넷째, 중재모델의 효과성에 대한 학교작업치료사의 의견과 적용시간, 중재 영역과 중재모델 적용시간 간에 유의한 상관관계는 나타나지 않았다. 연구결과를 종합해 보면 학교기반 작업치료사는 여전히 의료모델에 가까운 중재모델을 사용하는 것으로 나타나 학교기반에 효과적인 중재모델을 개발하고 적용하는 연구가 필요할 것이라 생각된다.
본 논문은 관심 객체 분할을 위한 통계적 모양 모델에 기반한 3차원 능동 모양 모델링 기법을 제안한다. 3차원 모양 모델을 만들려면 포인트 분산 모델(PDM)의 생성이 필수적인데, 이를 위해서는 모든 학습(training) 데이터에 대응하는 특징점(landmark)을 잘 선택해야 한다. 현재까지도 3차원 데이터에서 대응하는 특징점을 선택하는 방법은 주로 수동적으로 선택하거나 2차원 기반 기법 또는 제한된 3차원 기법이 사용되고 있다. 본 논문에서는 최근에 제안된 "3차원 통계적 모양 모델의 자동생성 기법"의 거리 변환(distance transform)과 사면체(tetrahedron) 알고리듬을 사용하여 3차원 통계적 모양 모델을 생성하고 2차원 능동 모양 모델의 모양 모델 학습과 그레이레벨(gray-level) 모델 학습을 개선하여 확장하고, 스케일(scale)과 그레이레벨 모델을 결합한 3차원 능동 모양 모델 알고리듬으로 관심 객체를 분할한다. 본 논문에서는 제안한 방법을 영역 기반 윤곽선 기반 기법 및 2차원 능동모양모델 기법과 그 성능을 비교하여 평가했다.
모드자료를 이용한 SI기법을 효과적으로 적용하기 위하여 최적 모델을 선택하는 방법을 제안하였다. 축소된 유한요소 모델 대신 가능한 상세한 유한요소 모델을 정하고 SI기법으로 식별하였다. 다만 미지변수의 수를 조절하기 위하여 부재그룹 개념을 도입하였다. 최적 모델은 시도된 부재그룹 경우 중에서 최소의 통계적 오차를 갖는 것으로 선택하였다. 본 논문에서는 단경간 box-girder교에 대한 예제 수행을 통하여 제안된 방법을 검토하였다.
패턴 또는 영상을 인식하기 위하여 먼저 기계 학습 모델을 선택하고, 선택된 모델은 여러 단계의 처리 단계 과정으로써, 학습 데이터 구성과 특징 추출 그리고 분류기 등으로 크게 나눌 수 있다. 기존의 학습 모델의 처리 단계 중 학습 데이터 구성은 첫 번째 중요한 단계이다. 본 논문에서는 학습 데이터들의 특징을 분석하여 데이터 분류성의 척도로 사용될 수 있는지를 검토하여 차후 기계 학습 및 딥 러닝의 인식을 높이고자 한다.
연합학습은 중앙 서버에서 데이터를 수집하는 방식이 아닌 로컬 디바이스 또는 클라이언트에서 학습을 진행하고 중앙 서버로 모델 업데이트만 전송하는 분산 학습 기법으로 데이터 보안 및 개인정보보호를 강화하는 동시에 효율적인 분산 학습을 수행할 수 있다. 그러나, 연합학습 대부분의 시나리오는 클라이언트의 서로 다른 분포 형태인 non-IID 데이터를 대상으로 학습함에 따라 중앙집중식 모델에 비하여 낮은 성능을 보이게 된다. 이에 본 연구에서는 연합학습 모델의 성능을 개선하기 위하여 non-IID 의 환경에서 참여 후보자 중에서 적합한 클라이언트 선택의 최적화 기법을 분석한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.