• 제목/요약/키워드: 모델선택

검색결과 3,083건 처리시간 0.031초

상대적 가중치 자질을 반영한 CRF 기반의 개체명 인식 (Named Entity Recognition based on CRF reflecting relative weight)

  • 정진욱
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.338-339
    • /
    • 2017
  • 본 논문은 개체명 인식을 위해 CRF 모델을 이용해 분류를 수행했다. 개체명 후보를 개체명으로 식별에서 중의성 문제가 필요하다. 본 논문에서는 이러한 중의성 문제 해결을 위해 학습 셋으로부터 패턴과 형태적 특성을 고려해 개체명 후보를 최대로 선택하고 선택된 개체명 후보의 중의성과 정확도를 높이기 위해 주변의 문맥 자질과 분별 확률 모델인 CRF를 이용해 중의성 문제를 해결한다.

  • PDF

자연 프루닝과 베이시안 선택에 의한 신경회로망 일반화 성능 향상 (Improving Generalization Performance of Neural Networks using Natural Pruning and Bayesian Selection)

  • 이현진;박혜영;이일병
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.326-338
    • /
    • 2003
  • 신경회로망 설계 및 모델선택의 목표는 최적의 구조를 가지는 일반화 성능이 우수한 네트워크를 구성하는 것이다. 하지만 학습데이타에는 노이즈(noise)가 존재하고, 그 수도 충분하지 않기 때문에 최종적으로 표현하고자 하는 진확률 분포와 학습 데이타에 의해 표현되는 경험확률분포(empirical probability density) 사이에는 차이가 발생한다. 이러한 차이 때문에 신경회로망을 학습데이타에 대하여 과다하게 적합(fitting)시키면, 학습데이타만의 확률분포를 잘 추정하도록 매개변수들이 조정되어 버리고, 진확률 분포로부터 멀어지게 된다. 이러한 현상을 과다학습이라고 하며, 과다학습된 신경회로망은 학습데이타에 대한 근사는 우수하지만, 새로운 데이타에 대한 예측은 떨어지게 된다. 또한 신경회로망의 복잡도가 증가 할수록 더 많은 매개변수들이 노이즈에 쉽게 적합되어 과다학습 현상은 더욱 심화된다. 본 논문에서는 통계적인 관점을 바탕으로 신경회로망의 일반화 성능을 향상시키는 신경회로 망의 설계 및 모델 선택의 통합적인 프로세스를 제안하고자 한다. 먼저 학습의 과정에서 적응적 정규화가 있는 자연기울기 학습을 통해 수렴속도의 향상과 동시에 과다학습을 방지하여 진확률 분포에 가까운 신경회로망을 얻는다. 이렇게 얻어진 신경회로망에 자연 프루닝(natural pruning) 방법을 적용하여 서로 다른 크기의 후보 신경회로망 모델을 얻는다. 이러한 학습과 복잡도 최적화의 통합 프로세스를 통하여 얻은 후보 모델들 중에서 최적의 모델을 베이시안 정보기준에 의해 선택함으로써 일반화 성능이 우수한 최적의 모델을 구성하는 방법을 제안한다. 또한 벤치마크 문제를 이용한 컴퓨터 시뮬레이션을 통하여, 제안하는 학습 및 모델 선택의 통합프로세스의 일반화 성능과 구조 최적화 성능의 우수성을 검증한다.

KNHNAES (2013~2015) 에 기반한 대형 특징 공간 데이터집 혼합형 효율적인 특징 선택 모델 (A Hybrid Efficient Feature Selection Model for High Dimensional Data Set based on KNHNAES (2013~2015))

  • 권태일;이정곤;박현우;류광선;김의탁;박명호
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권4호
    • /
    • pp.739-747
    • /
    • 2018
  • 고차원 데이터에서는 데이터마이닝 기법 중에서 특징 선택은 매우 중요한 과정이 되었다. 그러나 전통적인 단일 특징 선택방법은 더 이상 효율적인 특징선택 기법으로 적합하지 않을 수 있다. 본 논문에서 우리는 고차원 데이터에 대한 효율적인 특징선택을 위하여 혼합형 특징선택 기법을 제안하였다. 본 논문에서는 KNHANES 데이터에 제안한 혼합형 특징선택기법을 적용하여 분류한 결과 기존의 분류기법을 적용한 모델보다 5% 이상의 정확도가 향상되었다.

그래프 분류 기반 특징 선택을 활용한 작물 수확량 예측 (Crop Yield Estimation Utilizing Feature Selection Based on Graph Classification)

  • 옴마킨;이성근
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1269-1276
    • /
    • 2023
  • 작물 수확량 예측은 토양, 비, 기후, 대기 및 이들의 관계와 같은 다양한 측면으로 인해 다국적 식사와 강력한 수요에 필수적이며, 기후 변화는 농업 생산량에 영향을 미친다. 본 연구에서는 온도, 강수량, 습도 등의 데이터 세트를 운영한다. 현재 연구는 농부와 농업인을 지원하기 위해 다양한 분류기를 사용한 기능 선택에 중점을 두고 있다. 특징 선택 접근법을 활용한 작물 수확량 추정은 96% 정확도를 나타내었다. 특징 선택은 기계학습 모델의 성능에 영향을 미친다. 현재 그래프 분류기의 성능은 81.5%를 나타내며, 특징 선택이 없는 Random Forest 회귀 분석은 78%의 정확도를 나타냈다. 또한, 특징 선택이 없는 의사결정 트리 회귀 분석은 67%의 정확도를 유지하였다. 본 논문은 제시된 10가지 알고리즘을 대상으로 특징 선택 중요성에 대한 실험결과를 나타내었다. 이러한 결과는 작물 분류 연구에 적합한 모델을 선택하는 데 도움이 될 것으로 기대된다.

은닉 마르코프 모델 기반의 교통량 예측 기법 연구 (A Study of Traffic Prediction Method Based on Hidden Markov Model)

  • 김민재;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2014년도 제49차 동계학술대회논문집 22권1호
    • /
    • pp.347-348
    • /
    • 2014
  • 최근 급증하는 교통 혼잡으로 인해 시간적/물질적 손실이 크게 발생하고 있다. 이러한 교통난 해소는 시설투자만으로는 근본적인 해결책이 될 수 없다는 판단 하에 지난 수년간 보다 정확한 교통량을 예측하기 위해 시계열 기반의 다양한 교통량 예측 모델들이 개발 되어 왔다. 그러나 시계열 기반의 모델들은 회귀분석을 통해 과거 교통량을 분석하고 과거의 교통패턴이 미래에도 지속적으로 연장된다는 가정 하에 연구되었기 때문에 실시간으로 급변하는 불규칙한 교통 패턴에 대한 예측의 신뢰성을 떨어트린다. 또한 시계열 기반의 예측 기법은 어떠한 회귀분석 모델을 사용하는지에 따라 성능의 차이가 많이 나타나기 때문에 회귀분석 모델 선택이 중요하다. 이러한 제약을 극복하기 위해 본 논문에서는 은닉 마르코프 모델(Hidden Markov model)을 이용해 동적인 교통 패턴에 따라 현재 상황에 맞는 회귀분석 모델을 선택하는 신뢰도 높은 교통량 예측 시스템을 제안한다.

  • PDF

특수교육지원센터에 기반을 둔 작업치료서비스 전문가의 중재모델 사용 (Using an Intervention Model for Occupational Therapy Service Specialist Based on a Special Education Supporting Center)

  • 김세연;김수정
    • 한국콘텐츠학회논문지
    • /
    • 제11권4호
    • /
    • pp.225-234
    • /
    • 2011
  • 본 연구는 교육기반 작업치료 서비스 전문가가 사용하는 중재모델, 중재장소와 중재시간, 중재모델 선택시 고려사항, 중재모델과 중재 영역 간에 상관관계를 알아보기 위해 특수교육지원센터에 근무하고 있는 작업치료사와 작업치료를 전공한 치료교사를 대상으로 설문지를 발송하고, 회수한 총 46부를 분석에 사용하였다. 연구결과 첫째, 학생의 수행 기술을 향상시키는데 초점을 둔 개별치료 모델을 자주 사용하였다. 둘째, 아동수행을 향상시키는 중재모델과 다른 팀 전문가에게 작업치료의 중요성을 인식시킬 수 있는 모델로 개별 치료를 선택하였다. 셋째, 중재모델을 선택하는 요인으로 수행구성요소의 결함과 팀 책임자의 마인드를 들었다. 넷째, 중재모델의 효과성에 대한 학교작업치료사의 의견과 적용시간, 중재 영역과 중재모델 적용시간 간에 유의한 상관관계는 나타나지 않았다. 연구결과를 종합해 보면 학교기반 작업치료사는 여전히 의료모델에 가까운 중재모델을 사용하는 것으로 나타나 학교기반에 효과적인 중재모델을 개발하고 적용하는 연구가 필요할 것이라 생각된다.

의료영상 분할을 위한 3차원 능동 모양 모델 (Three-Dimensional Active Shape Models for Medical Image Segmentation)

  • 임성재;정용연;호요성
    • 전자공학회논문지SC
    • /
    • 제44권5호
    • /
    • pp.55-61
    • /
    • 2007
  • 본 논문은 관심 객체 분할을 위한 통계적 모양 모델에 기반한 3차원 능동 모양 모델링 기법을 제안한다. 3차원 모양 모델을 만들려면 포인트 분산 모델(PDM)의 생성이 필수적인데, 이를 위해서는 모든 학습(training) 데이터에 대응하는 특징점(landmark)을 잘 선택해야 한다. 현재까지도 3차원 데이터에서 대응하는 특징점을 선택하는 방법은 주로 수동적으로 선택하거나 2차원 기반 기법 또는 제한된 3차원 기법이 사용되고 있다. 본 논문에서는 최근에 제안된 "3차원 통계적 모양 모델의 자동생성 기법"의 거리 변환(distance transform)과 사면체(tetrahedron) 알고리듬을 사용하여 3차원 통계적 모양 모델을 생성하고 2차원 능동 모양 모델의 모양 모델 학습과 그레이레벨(gray-level) 모델 학습을 개선하여 확장하고, 스케일(scale)과 그레이레벨 모델을 결합한 3차원 능동 모양 모델 알고리듬으로 관심 객체를 분할한다. 본 논문에서는 제안한 방법을 영역 기반 윤곽선 기반 기법 및 2차원 능동모양모델 기법과 그 성능을 비교하여 평가했다.

SI기법 적용을 위한 최적 모델의 선택 (Selection of Optimal Model for Structural System Identification)

  • 곽현석;권순정;이해성;신수봉
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권2호
    • /
    • pp.217-224
    • /
    • 2005
  • 모드자료를 이용한 SI기법을 효과적으로 적용하기 위하여 최적 모델을 선택하는 방법을 제안하였다. 축소된 유한요소 모델 대신 가능한 상세한 유한요소 모델을 정하고 SI기법으로 식별하였다. 다만 미지변수의 수를 조절하기 위하여 부재그룹 개념을 도입하였다. 최적 모델은 시도된 부재그룹 경우 중에서 최소의 통계적 오차를 갖는 것으로 선택하였다. 본 논문에서는 단경간 box-girder교에 대한 예제 수행을 통하여 제안된 방법을 검토하였다.

영상인식을 위한 화질의 데이터 분류성 (Data Classification of Visual Quality for Image Recognition)

  • 조재현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.279-280
    • /
    • 2021
  • 패턴 또는 영상을 인식하기 위하여 먼저 기계 학습 모델을 선택하고, 선택된 모델은 여러 단계의 처리 단계 과정으로써, 학습 데이터 구성과 특징 추출 그리고 분류기 등으로 크게 나눌 수 있다. 기존의 학습 모델의 처리 단계 중 학습 데이터 구성은 첫 번째 중요한 단계이다. 본 논문에서는 학습 데이터들의 특징을 분석하여 데이터 분류성의 척도로 사용될 수 있는지를 검토하여 차후 기계 학습 및 딥 러닝의 인식을 높이고자 한다.

  • PDF

연합학습 환경에서 클라이언트 선택의 최적화 기법

  • 박민정;손영진;채상미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.722-723
    • /
    • 2023
  • 연합학습은 중앙 서버에서 데이터를 수집하는 방식이 아닌 로컬 디바이스 또는 클라이언트에서 학습을 진행하고 중앙 서버로 모델 업데이트만 전송하는 분산 학습 기법으로 데이터 보안 및 개인정보보호를 강화하는 동시에 효율적인 분산 학습을 수행할 수 있다. 그러나, 연합학습 대부분의 시나리오는 클라이언트의 서로 다른 분포 형태인 non-IID 데이터를 대상으로 학습함에 따라 중앙집중식 모델에 비하여 낮은 성능을 보이게 된다. 이에 본 연구에서는 연합학습 모델의 성능을 개선하기 위하여 non-IID 의 환경에서 참여 후보자 중에서 적합한 클라이언트 선택의 최적화 기법을 분석한다.