• Title/Summary/Keyword: 모달교대작용

Search Result 4, Processing Time 0.017 seconds

Hydrous Minerals (Phlogopite and Amphibole) from Basaltic Rocks, Jeju Island: Evidences for Modal Metasomatism (제주도 현무암에 산출되는 함수광물(금운모와 각섬석): 모달교대작용의 증거)

  • Heo, Seo-Young;Yang, Kyoung-Hee;Jeong, Hoon-Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.13-30
    • /
    • 2012
  • Phlogopite and kaersutite, showing distinctively different textural characteristics compared to the common phenocrysts, are observed in alkali basalt from Jeju Island. They occur as large crystals (2-10 mm) in host basalts, whereas fine-grained phlogopite and kaersutite occur in ultramafic mantle xenoliths and mafic gabbroic xenoliths, respectively, as an interstitial and microvein phases, or in corona textures (<1 mm). This textural characteristics of fine-grained grains clearly indicates secondary in origin. Phlogopite contains high $TiO_2$(4.1-6.9 wt%) and F(2.8-4.6 wt%) and relatively high mg#[=100Mg/(Mg+$Fe^t$) in mols, where $Fe^t$ is total iron](88-80), whereas kaersutite has high $TiO_2$(5.6-6.11 wt%) and much lower mg#s(68-64). Our textural observations and the geochemical character of these hydrous minerals suggest that they were unrelated to each other and mica formation happened early in the upper mantle before the mantle xenoliths had been trapped. In contrast, kaersutite formation has happened later, probably during the late stage of crystallization as intracrustal processes. The presence of phlogopite and kaersutitic amphibole is a direct evidence for K-, Ti-, F- and $H_2O$-bearing fluid/melt percolation in the lithosphere beneath Jeju Island, indicating that they are product of interaction between host rock/peridotite/fluid-melt. Thus, the upper mantle/lower crust beneath Jeju Island are metasomatized to various extents, characterized by a change in major metasomatic hydrous minerals from phlogopite to amphibole with decreasing depth.

Silica Enrichment in Mantle Xenoliths Trapped in Basalt, Jeju Island: Modal Metasomatic Evidences (제주도 맨틀포획암내의 실리카 부화작용: 모달 교대작용의 증거)

  • Yu, Jae-Eun;Kim, Sun-Woong;Yang, Kyoung-Hee
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.61-75
    • /
    • 2011
  • Mantle-derived xenoliths, corresponding to spinel harzburgite and lherzolite in alkali basalts from Jeju Island, are metasomatized to various extents. They contain distinctive secondary orthopyroxene, forming corona or poikilitic textures. It clearly indicate that this secondary orthopyroxene has been produced at the expense of olivine along the grain boundaries and margins, suggesting silica-enriched metasomatic melt infiltrated through grain boundaries. Based on the geotectonic characteristics of Jeju Island and textural characteristics and major elements composition of mantle xenoliths, it is suggested that the silica-enriched melt/fluid could have derived from the ancient subducted slab, possibly in the mantle wedge, implying that the high $SiO_2$ activity in the lithospheric upper mantle beneath Jeju Island at that time.

Regional-scale metasomatism of Al, K, and Na during stauroliteandalusite- grade contact metamorphism, in the southwestern Nova Scotia, Canada (십자석-홍주석 접촉 변성과정에 수반된 Al, K, Na의 광역적 변성교대작용 - 캐나다 노바스코시아주 서남부의 예 -)

  • Sang-Gi Hwang
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.52-64
    • /
    • 1997
  • Pelitic rocks of southwestern Nova Scotia have been affected by widespread contact metamorphism due to the intrusion of the Shellburne Pluton, with aureole up to 15 km wide. Well-preserved pseudomorphic textures indicate that common staurolite and andalusite metacrysts formed at the expense only of plagioclase, muscovite and biotite. Excess components (K, Na and Ca) from such replacement reactions imply extensive metasomatism throughout the contact aureole. Modal analysis of a typical andalusite-bearing rock indicates a one-to-one volume ratio of product to reactant. However the products of the replacement reactions contain approximately three times more aluminum than the reactants, indicating that the regional metasomatism also involved aluminum.

  • PDF

Petrology and Geochemistry of Peridotite Xenoliths from Miocene Alkaline Basalt Near the Mt. Baekdu Area (백두산 지역의 마이오세 알칼리 현무암에 포획된 페리도타이트의 암석학적/지화학적 특성)

  • Kim, Eunju;Park, Geunyeong;Kim, Sunwoong;Kil, Youngwoo;Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.311-325
    • /
    • 2017
  • Peridotite xenoliths in middle Miocene alkaline basalt from the Mt. Baekdu area are mainly anhydrous spinel lherzolites, displaying coarse-grained protogranular texture. These xenoliths have late-stage secondary orthopyroxene replacing olivine as the metasomatic mineral and glass formed along the grain boundaries. The studied xenoliths are characterized by the high $Mg{\sharp}[=100{\times}Mg/(Mg+Fe_{total})$ atomic ratio] of olivine, orthopyroxene and clinopyroxene (89~92) and the $Cr{\sharp}[=100{\times}Cr/(Cr+Al)$ atomic ratio] of spinel (10~29). Based on major-element data, the studied xenoliths are similar to those from the abyssal peridotites. Clinopyroxenes of the xenoliths are mostly enriched in incompatible trace elements, exhibiting two types of REE patterns: (1) LREE-depleted with $(La/Yb)_N$ of 0.1~0.2 and $(La/Ce)_N$ of 0.4~0.8. (2) LREE enriched with $(La/Yb)_N$ of 2.2~3.8 and $(La/Ce)_N$ of 1.2~1.6. The calculated equilibrium temperatures and oxygen fugacities resulted in $920{\sim}1050^{\circ}C$ and ${\Delta}fO_2(QFM)=-0.8{\sim}0.2$, respectively. It is suggested that the Mt. Baekdu peridotite xenoliths represent residues left after variable degrees of melt extraction(less than 15 vol%), which was subsequently subjected to different degrees of modal/cryptic metasomatism by silica- and LREE-enriched fluids (or melts).