• Title/Summary/Keyword: 모나자이트

Search Result 55, Processing Time 0.024 seconds

A Simple EDTA Titration Method for the Determination of Lead in Monazite (모나자이트 중의 납 정량을 위한 신속한 EDTA 적정법)

  • Chul Lee;Won Ji Cho
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.313-316
    • /
    • 1969
  • In this paper a simple and rapid method is described for the determination of lead in monazite. A monazite sample was dissolved with hot concentrated sulfuric acid and diluted to 200 ml with distilled water. Lead is quatitatively separated by coprecipitating with strontium. Lead-strontium sulfate is dissolved in 3N NaOH soluion. An excess Zn-EDTA is added. The remaining zinc ion is titrated with standard 0.01 M EDTA solution using xylenol orange as indicator at pH 5 in the presence of KCN and acetyl acetone as masking agents.

  • PDF

Petrography of Hongcheon Fe-REE Deposit (홍천 철-희토류광상의 암석기재학)

  • 이한영;박중권;황덕환
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.90-102
    • /
    • 2002
  • The studied Fe-REE ore consists of magnetite, ankerite, siderite, magnesite and strontianite as the major constituent, and monazite, columbite, fergusonite, apatite, aegirine-augite, Na-amphibole, pyrite, chalcopyrite, sphalerite, molybdenite and barite as accessaries. Wall rock of ore deposits is replaced to fenite due to Na-metasomatism and mainly consists of sugary albite and Na-amphibole. Monazite $Ce_{0.49}La_{0.31}Pr_{0.14}Nd_{0.03}Gd_{0.03})PO_4$ is the main mineral for REE deposit and shows myrmekitic intergrowth with strontianite $Ca_{0.02-0.16}Sr_{0.84-0.98}CO_3$ and is corroded by carbonate minerals. Mineral forming sequence can be divided into early and late periods by the development of microfractures. The early period minerals such as magnetite, ankerite, magnesite, monazite and apatite show well developed networks of microfractures due to cataclastic deformation caused by enriched $CO_2$ gas in melts during emplacement. The late minerals of columbite, fergusonite, siderite molybdenite, chalcopyrite and sphalerite formed after the brecciation event and have little micro-fractures. Ankerite, magnesite, monazite, strontianite, barite and pyrite seem to be formed continuously from the ealy to the late period since they show textures both with well developed fractures and also with little fractures. Mineral chemistry, mineral assemblages such as various carbonate minerals, magnetite, REE minerals of monazite and fergusonite, Sr mineral of strontianite, and Nb minerals of columbite, myrmekitic texture of monazite and ankerite, and well developed fenite along ore deposits observed from this studied area strongly indicate that this Hongcheon Fe-REE ore deposits are formed from carbonatitic melt and its rock type is late differentiated Fe-carbonatite or ankerite-carbonatite.

Solvent Extraction of the Thorium from Monazite Leaching Solution by Primene-JM-T (모나자이트 침출액으로부터 Primene-JM-T를 이용한 토륨의 용매추출)

  • Jeon, Jong-Hyuk;Kim, Hong-In;Lee, Jin-Young;Jyothi, Rajesh Kumar
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.32-37
    • /
    • 2021
  • Thorium extraction and possible separation from monazite leaching solution was studied. Primary amine Primene JM-T was select ed for t horium ext ract ion processing. Various experiment s were t est ed and est ablished for t he t horium liquid -liquid extraction process. The screening of extractant, lower pH conditions, extractant variation and extraction isotherms construction, and finally, stripping studies were established.

A Simple Method for the Separation of Thorium in the Analysis of Monazite (모나자이트 분석을 위한 간편한 토륨분리법)

  • Lee Chull;Chung Koo Soon
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.1
    • /
    • pp.5-9
    • /
    • 1971
  • A separation scheme using cation exchange procedure is designed specifically for the rapid determination of thorium in monazite samples. All the coexisting ions in monazite, including rare earth ions, are eluted with 3N hydrochloric acid. The remaining thorium is eluted from the resin column with 5N sulfuric acid prior to spectrophotometric determination with thorin reagent. The radioactive tracers and spectrophotometric methods were used to confirm the quantitative elution of thorium and also the chemical purity of the eluted thorium from the column.

  • PDF

CHIME Monazite Ages of Jurassic Foliated Granites in the Vicinity of the Gangjin Area, Korea (강진 인근 쥬라기 엽리상 화강암류의 CHIME 모나자이트 연대측정)

  • Cho, Deung-Lyong;Kee, Weon-Seo;Suzuki, Kazuhiro
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.101-115
    • /
    • 2007
  • The CHIME (chemical Th-U-total Pb isochron method) dating on monazite was carried out for two foliated granites from a dextral ductile shear zone in the vicinity of Gangjin area, which is considered to be a southern extension of Sunchang shear zone. The result gives emplacement age of the medium-grained biotite granite and the coarse-grained biotite granite as $183.6{\pm}2.2Ma$(MSWD=0.21) and $171.7{\pm}4.0Ma$(MSWD=0.57), respectively. Microtextures of quartz and feldspar observed in the foliated granite are almost identical with those reported in Jurassic (ca 180 Ma) foliated granites from the Imsil-Namwon area of the Sunchang shear zone, and they constraint that the ductile deformation took place at temperature condition of $300{\sim}550^{\circ}C$. Assuming cooling curves of the foliated granites in this study are similar with those of Jurassic foliated granites from Imsil-Namwon area, dextral ductile shear in the Gangjin area would take place between 172 Ma and 150 Ma, about 10 Ma later than the previous estimation based on CHIME monazite ages.

Solvent Extraction for the Separation of Nd and Pr from Chloride Leaching Solution of Monazite Sand (모나자이트 샌드의 염산침출용액으로부터 용매추출에 의한 Nd와 Pr의 분리)

  • Park, Ju-Ho;Jeon, Ho-Seok;Lee, Man-Seung
    • Resources Recycling
    • /
    • v.23 no.1
    • /
    • pp.17-24
    • /
    • 2014
  • Solvent extraction experiments have been performed to separate Nd and Pr from chloride leaching solution of monazite sand using PC88A and D2EHPA. For this purpose, the effect of the saponification of PC88A and D2EHPA on the extraction and separation of the two metals were studied by varying the pH of aqueous solution. In the experimental ranges conducted in this study, the distribution coefficients of Nd were higher than those of Pr and separation factor value increased with the increase of solution pH. Saponification of PC88A enhanced the distribution coefficients of Nd and Pr as well as the separation factor. Saponification of D2EHPA had some effect on the extraction of the two metals but little effect on the separation factor.

Separation of Rare Earth Elements in Monazite Sand by Anion Exchange Resin (Ⅱ) (음이온교환수지에 의한 모나자이트 중 희토류원소의 분리 (제2보))

  • Ki-Won Cha;Joung-Hae Lee;Suk-Ho Yoon;Youny-Gu Ha
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.452-456
    • /
    • 1980
  • An anion exchange method for separating Y, La, Ce, Pr, and Nd element in monazites and into enriched fractions has been developed. The complexed rare earth ions with EDTA at pH 8.4 passed through the resin column of the various size and eluted with 0.0301 M EDTA as eluent at flow rate of 1 ml/min and 2 ml/min. The result of separation is good in the high column length rather than the low on using the resin of the same amount and the volume of eluent required in eluting all the rare earths at 2 ml/min flow rate is larger than that at 1 ml/min and the result of separation obtained here is unsatisfactory.

  • PDF