CHIME Monazite Ages of Jurassic Foliated Granites in the Vicinity of the Gangjin Area, Korea

강진 인근 쥬라기 엽리상 화강암류의 CHIME 모나자이트 연대측정

  • Cho, Deung-Lyong (Division of Geology and Geoinformation, Korea Institute of Geoscience and Mineral Resources) ;
  • Kee, Weon-Seo (Division of Geology and Geoinformation, Korea Institute of Geoscience and Mineral Resources) ;
  • Suzuki, Kazuhiro (Center for Chronological Research, Nagoya University)
  • 조등룡 (한국지질자원연구원 지질기반정보연구부) ;
  • 기원서 (한국지질자원연구원 지질기반정보연구부) ;
  • Published : 2007.09.30

Abstract

The CHIME (chemical Th-U-total Pb isochron method) dating on monazite was carried out for two foliated granites from a dextral ductile shear zone in the vicinity of Gangjin area, which is considered to be a southern extension of Sunchang shear zone. The result gives emplacement age of the medium-grained biotite granite and the coarse-grained biotite granite as $183.6{\pm}2.2Ma$(MSWD=0.21) and $171.7{\pm}4.0Ma$(MSWD=0.57), respectively. Microtextures of quartz and feldspar observed in the foliated granite are almost identical with those reported in Jurassic (ca 180 Ma) foliated granites from the Imsil-Namwon area of the Sunchang shear zone, and they constraint that the ductile deformation took place at temperature condition of $300{\sim}550^{\circ}C$. Assuming cooling curves of the foliated granites in this study are similar with those of Jurassic foliated granites from Imsil-Namwon area, dextral ductile shear in the Gangjin area would take place between 172 Ma and 150 Ma, about 10 Ma later than the previous estimation based on CHIME monazite ages.

순창전단대의 남쪽 연장이라 여겨지는 강진 인근에 분포하는 우수향 연성전단대의 엽리상 화강암류 2시료에 대한 CHIME 모나자이트 연대측정을 실시하여 중립질 흑운모 화강암과 조립질 흑운모 화강암의 관입시기에 해당하는 $183.6{\pm}2.2Ma$(MSWD=0.21)와 $171.7{\pm}4.0Ma$(MSWD=0.57)를 각각 얻었다. 이 연구의 엽리상 화강암에서 관찰되는 석영과 장석의 미구조적 특징은 순창전단대의 임실-남원 지역 쥬라기(약 180 Ma) 엽리상 화강암류에서 보고된 것과 대단히 흡사하며, 우수향의 연성전단작용이 $300{\sim}550^{\circ}C$의 온도조건에서 일어났음을 제한한다. 이 연구의 엽리상 화강암이 임실-남원 지역의 쥬라기 엽리상 화강암류와 유사한 냉각과정을 거쳤다고 가정하면 강진 지역의 우수향 전단작용의 시기는 172 Ma와 150 Ma사이에 일어났을 것이고, 이는 기존의 CHIME 모나자이트 연령에 근거한 추정보다 약 10 Ma 후기이다.

Keywords

References

  1. 권성택, 이진한, 1997, 호남전단대의 운동시기에 관한 소고. 지질학회지, 33, 183-188
  2. 김용준, 조등룡, 이창신, 1998, 한반도 남서부 남원 일대에 분포하는 A형 대강화강암의 암석학, 지화학 및 지구조적 의미. 자원환경지질, 31, 399-413
  3. 김유봉, 임순복, 최현일, 이창범, 김복철, 전희영, 박석환, 조등룡, 고희재, 이승렬, 박홍수, 김정찬, 이윤수, 2001, 옥천대 남부 시대미상지층의 층서연구. 한국지질자원연구원, KR-01(연차)-02, 176p
  4. 장태우, 이미경, 1996a, 순창전단대내 화강분쇄암의 열구조 발달: 1. 입자크기 감소. 지질학회지, 32, 421-430
  5. 장태우, 이미경, 1996b, 순창전단대내 화강분쇄암의 열구조 발달: 2. 열구조. 지질학회지, 32, 500-508
  6. 조등룡, 2004, 저어콘 아입자 분석을 위한 효율적인 광물분리 및 시료준비 방법. 암석학회지, 13, 126-132
  7. 주승환, 김성재, 1986, 영남육괴 Rb-Sr 연대측정연구(II): 지리산 남서부 일대 화강암질 편마암 및 편마상 화강암류. 한국동력자원연구소, KR-86-7, 7-34
  8. 황재하, 최범영, 김복철, 기원서, 송교영, 2000, 무안도폭지질보고서 (1:25000). 한국자원연구소 58p
  9. Amli, R. and Griffin, W.L., 1975, Microprobe analyses of REE minerals using empirical correction factors. American Mineralogist, 60, 599-606
  10. Asami, M., Suzuki, K. and Grew, E.S., 2002, Chemical Th-U-total Pb dating by electron microprobe analysis of monazite, xenotime and zircon from the Archean Napier Complex, East Antarctica: evidence for ultra-high-temperature metamorphism at 2400 Ma. Precambrian Research, 114, 249-275 https://doi.org/10.1016/S0301-9268(01)00228-5
  11. Bence, A.E. and Albee, A.L., 1968. Empirical correction factors for the electron microanalysis of silicates and oxides. Journal of Geology, 76, 382-403 https://doi.org/10.1086/627339
  12. Berthe, D., Choukroune, P. and Jegouzo, P., 1979, Orthogneiss, mylonites and non coaxial deformation of granites: the example of the South Armorican Shear Zone. Journal of Structural Geology, 1, 31-42 https://doi.org/10.1016/0191-8141(79)90019-1
  13. Cheong, C.-S., Kee, W.-S., Jeong, Y.-J. and Jeong, G. Y., 2006, Multiple deformations along the Honam shear zone in southwestern Korea constrained by Rb-Sr dating of synkinematic fabrics: Implications for the Mesozoic tectonic evolution of northeastern Asia. Lithos, 87, 289-299 https://doi.org/10.1016/j.lithos.2005.06.015
  14. Cherniak, D.J. and Watson, E.B. 1998. Pb diffusion in zircon. Geological Society of America Abstracts with Programs 30, A213
  15. Cho, K.-H., Takagi, H. and Suzuki K., 1999, CHIME monazite age of granitic rocks in the Sunchang shear zone, Korea: timing of dextral ductile shear. Geosciences Journal, 3, 1-15 https://doi.org/10.1007/BF02910229
  16. Cluzel, D., Lee, B.J. and Cadet, J.P., 1991, Indosinian dextral ductile fault system and synkinematic plutonism in the southwest of the Ogcheon belt (South Korea). Tectonophysics, 194, 131-151 https://doi.org/10.1016/0040-1951(91)90277-Y
  17. Cocherie A., Legendre O., Peucat J.J. and Kouamelan A.N., 1998, Geochronology of polygenetic monazites constrained by in situ electron microprobe Th-U-total Pb determination: Implications for lead behaviour in monazite. Geochimica et Cosmochimica Acta, 62, 2475- 2497 https://doi.org/10.1016/S0016-7037(98)00171-9
  18. Cocherie, A. and Legendre O., 2007, Potential minerals for determining U-Th-Pb chemical age using electron microprobe. Lithos, 93, 288-309 https://doi.org/10.1016/j.lithos.2006.03.069
  19. Compston, W., Williams, I.S. and Mayer, C., 1984, U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Proceedings of the Lunar Science Conference 14th, part 2, Journal of Geophysical Research, 89, Suppl:B 525-534
  20. Hanmer, S.K. 1982, Microstructure and geochemistry of plagioclase and microcline in naturally deformed granite. Journal of Structural Geology, 4, 197-213 https://doi.org/10.1016/0191-8141(82)90027-X
  21. Kato, T., Suzuki K. and Adachi M, 1999, Computer program for the CHIME age calculation. Journal of Earth and Planetary Sciences, Nagoya University, 46, 49-56
  22. Kim, J.H. and Kee, W.-S., 1994, Structural characteristics of the Soonchang Shear Zone, Korea. Journal of Southeast Asian Earth Sciences, 9, 417-428 https://doi.org/10.1016/0743-9547(94)90053-1
  23. Kusiak, M.A., Kedzior, A., Paszkowski. M., Suzuki, K., Gonzalez-Alvarez, I., Wajsprych, B. and Doktor M., 2006, Provenance implications of Th-U-Pb electron microprobe ages from detrital monazite in the Carboniferous Upper Silesia Coal Basin, Poland. Lithos, 88, 56-71 https://doi.org/10.1016/j.lithos.2005.08.004
  24. Lee, J.K.W., Williams, I.S. and Ellis, D.J., 1997, Pb, U and Th diffusion in natural zircon. Nature, 390, 159-162 https://doi.org/10.1038/36554
  25. Montel, J.M., Foret, S., Veschambre, M., Nicollet, C. and Provost A., 1996, Electron microprobe dating of monazite. Chemical Geology, 131, 37-53 https://doi.org/10.1016/0009-2541(96)00024-1
  26. Otoh, S. and Yanai, S., 1996, Mesozoic inverse wrench tectonics in far east Asia: examples from Korea and Japan. In: Yin, A., Harrison, M. (eds.), The Tectonic Evolution of Asia. Cambridge University Press, Stanford, 401-419
  27. Pyle, J.M., Spear, F.S., Wark, D.A., Daniel, C.G. and Storm, L.C., 2005, Contribution to precision and accuracy of monazite microprobe ages. American Mineralogist, 90, 547-577 https://doi.org/10.2138/am.2005.1340
  28. Sagong H., Kwon, S.-T. and Ree, J.-H., 2005, Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics, 24, TC5002, doi:10.1029/ 2004TC001720
  29. Simpson, C. and Wintch, R.P., 1989, Evidence for deformation-induced K-feldspar replacement by myrmekite. Journal of Metamorphic Geology, 7, 261-275 https://doi.org/10.1111/j.1525-1314.1989.tb00588.x
  30. Smellie, J.A.T., Cogger, N. and Herrington, J., 1978, Standards for quantitative microprobe determination of uranium and thoriurn with additional information on the chemical formulae of davidite and euxenite-polycrase. Chemical Geology, 22, 1-10 https://doi.org/10.1016/0009-2541(78)90016-5
  31. Smith, H.A. and Giletti, B.J., 1997, Lead diffusion in monazite. Geochimica et Cosmochimica Acta, 61, 1047-1055 https://doi.org/10.1016/S0016-7037(96)00396-1
  32. Suzuki, K. and Adachi, M., 1991a, Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime. Geochemical Journal, 25, 357-376 https://doi.org/10.2343/geochemj.25.357
  33. Suzuki, K. and Adachi, M., 1991b, The chemical Th-U-total Pb isochron ages of zircon and monazite form the Gray Granite of the Hida terrane, Japan. Journal of Earth and Planetary Sciences, Nagoya University, 38, 11-37
  34. Suzuki, K. and Adachi, M., 1994, Middle Precambrian detrital monazite and zircon from the Hida gneiss on Oki-Dogo Island, Japan: their origin and implication for the correlation of basement gneiss of Southwest Japan and Korea. Tectonophysics, 235, 277-292 https://doi.org/10.1016/0040-1951(94)90198-8
  35. Suzuki, K. and Adachi, M., 1998, Denudation history of the high T/P Ryoke metamorphic belt, southwest Japan: constraints from CHIME monazite ages of gneisses and granitoids. Journal of Metamorphic Geology, 16, 23-37 https://doi.org/10.1111/j.1525-1314.1998.00057.x
  36. Tullis, J., 1983, Deformation in feldspar. In: Feldspar Mineralogy, Reviews in Mineralogy Vol. 2 (edited by Ribbe, H.P.). Mineralogical Society of America, 297-323
  37. Tullis, J. and Yund, R.A., 1977, Experimental deformation of dry Westerly Granite. Journal of Geophysical Research, 82, 5705-5718 https://doi.org/10.1029/JB082i036p05705
  38. Turek, A. and Kim, J.B., 1995, U-Pb zircon age of Mesozoic plutons in the Damyang-Geochang area, Ryeongnam massif, Korea. Geochemical Journal, 29, 243-258 https://doi.org/10.2343/geochemj.29.243
  39. Vernon, R.H., Williams, V.A. and D'Arcy, W.F., 1983, Grain-size reduction and foliation development in a deformed granite batholith. Tectonophysics, 92, 123-145 https://doi.org/10.1016/0040-1951(83)90087-2
  40. Voll, G., 1976, Recrystallization of quartz, biotite and feldspars from the Erstfeld to the Leventina nappe, Swiss Alps and its geological significance. Schweizerische Mineralogische und Petrographische Mitteilungen Bulletin, 56, 641-647
  41. Yanai, A., Jwa, Y.J., Otoh, S., Yamakita, S. and Park, B.S., 1993, Honam intra-arc transcurrent fault and Jurassic geodynamics in east Asia. In: Xu, J. (ed.), The Tancheng-Lujiang wrench fault system. John Wiley and Sons, New York, 213-224
  42. Yanai, S., Park, B.S. and Otoh, S., 1985, The Honam shear zone (South Korea): Deformation and Tectonic Implication in the Far East. Scientific Papers of College of the Arts and Sciences of the University of Tokyo, 35, 181-210
  43. Yin, A. and Nie, S., 1993, An indentation model for the north and south China collision and the development of the Tan-Lu and Honam fault systems, eastern Asia. Tectonics, 12, 801- 813 https://doi.org/10.1029/93TC00313
  44. York, D., 1966, Least-squares fitting of a straight line. Canadian Journal of Physics, 44, 1079-1086 https://doi.org/10.1139/p66-090