• Title/Summary/Keyword: 명암리

Search Result 53, Processing Time 0.027 seconds

Automatic Detection of Pulmonary Embolism in Spiral CT Angiography (나선형 CT 혈관촬영의 폐색전증 자동 검출)

  • Han, Jae-Bok;Hong, Sung-Hoon;Kim, Soo-Hyung;Lee, Guee-Sang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.703-706
    • /
    • 2004
  • 나선형 CT 혈관촬영에서 획득한 영상의 분석를 통해서 폐색전증이 의심되는 부위를 자동으로 검출하는 방법으로, 연구 대상은 20명의 환자를 대상으로 분석하였으며 CT 검사 후 방사선과 의사가 정상소견을 받은 환자 5명과 폐색전증이 있는 판독소견을 가진 15명을 대상으로 비교 분석하였다. CT 검사하는 동안에 조영제를 투입하면, 폐색전증이 발생한 부위는 조영제 양과 분포가 불균등하여 명암값이 낮게 검출된다. 검출방법으로는 전처리 작업으로 폐영역만을 분할하고, 분할된 폐영역에서 혈관을 찾기 위해 모폴로지기법를 적용하여 세선화(thinning) 작업을 진행한다. 다음 공정으로는 경계선을 찾아 local watershed를 적용하여 혈관을 검출하고, 검출된 혈관내에서 원형모델을 적용하여 모폴로지(morphology)을 통해 국소 부위의 미세한 농도변화를 인지하여 색전이 발생한 영역을 자동검출하였다. 본 논문의 자동검출시스템에서는 색전증이 있는 경우에 true positive의 발생빈도는 case 당 4.5개가 검출되었다. 정상인의 경우에도 혈류의 흐름, 혈류의 분기점, 노이즈로 인한 false positive의 빈도는 case 당 2.6개가 발생하여 전체적으로 false positive는 5.2개가 검출되었다. 본 논문은 false positive의 비율이 높게 검출되었지만 폐영역 CT 검사의 컴퓨터지원진단시스템(computer aided diagnosis)의 향후 연구과제에 방향을 제시할 수 있을 것이라 사료된다.

  • PDF

An Efficient Edge Detection Technique for Separating Regions in an Image (영상내에서 영역 구분을 위한 효율적인 경계검출 기법)

  • Shin, Kwang-seong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.359-360
    • /
    • 2021
  • The pixel-based processing of an image refers to a process of converting a value of one pixel only depending on the value of the current pixel, regardless of the value of another pixel. Pixel-based processing is used as the most basic operation in many fields such as image conversion, image enhancement, and image synthesis. There are processing methods such as arithmetic operation, histogram smoothing, and contrast stretching. In this paper, in order to clearly distinguish the tidal flat region from the tidal flat image of the west coast taken with a drone, we seek a method to find an efficient outline using pixel-based processing in the boundary detection part of the pre-processing process.

  • PDF

Improved Fuzzy Binarization Method with Trapezoid type Membership Function and Adaptive α_cut (사다리꼴 형태의 소속 함수와 동적 α_cut 을이용한 개선된 퍼지 이진화)

  • Woo, Hyun-su;Kim, Kwang-baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1852-1859
    • /
    • 2016
  • The effectiveness of a binarization algorithm in image processing depends on how to eliminate the uncertainty of determining threshold in a reasonable way and on minimizing information loss due to the binarization effect. Fuzzy binarization technique was proposed to handle that uncertainty with fuzzy logic. However, that method is known to be inefficient when the given image has low intensity contrast. In this paper, we propose an improved fuzzy binarization method to overcome such known drawbacks. Our method proposes a trapezoid type fuzzy membership function instead of most-frequently used triangle type one. We also propose an adaptive ${\alpha}$_cut determination policy. Our proposed method has less information loss than other algorithms since we do not use any stretching based preprocessing for enhancing the intensity contrast. In experiment, our proposed method is verified to be more effective in binarization with less information loss for many different types of images with low intensity contrast such as night scenery, lumber scoliosis, and lipoma images.

Intelligent Diagnosis Assistant System of Capsule Endoscopy Video Through Analysis of Video Frames (영상 프레임 분석을 통한 대용량 캡슐내시경 영상의 지능형 판독보조 시스템)

  • Lee, H.G.;Choi, H.K.;Lee, D.H.;Lee, S.C.
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.2
    • /
    • pp.33-48
    • /
    • 2009
  • Capsule endoscopy is one of the most remarkable inventions in last ten years. Causing less pain for patients, diagnosis for entire digestive system has been considered as a most convenience method over a normal endoscope. However, it is known that the diagnosis process typically requires very long inspection time for clinical experts because of considerably many duplicate images of same areas in human digestive system due to uncontrollable movement of a capsule endoscope. In this paper, we propose a method for clinical diagnosticians to get highly valuable information from capsule-endoscopy video. Our software system consists of three global maps, such as movement map, characteristic map, and brightness map, in temporal domain for entire sequence of the input video. The movement map can be used for effectively removing duplicated adjacent images. The characteristic and brightness maps provide frame content analyses that can be quickly used for segmenting regions or locating some features(such as blood) in the stream. Our experiments show the results of four patients having different health conditions. The result maps clearly capture the movements and characteristics from the image frames. Our method may help the diagnosticians quickly search the locations of lesion, bleeding, or some other interesting areas.

  • PDF

Ultrasonographic Analysis of the Size and Shape of the Muscles (근육의 크기와 형태의 초음파적 분석)

  • Kim, Kwang-Baek
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.9-15
    • /
    • 2011
  • In this paper, we propose a method to extract the external oblique muscle of abdomen images that is often excluded by previous method due to image distortion. In the preprocessing phase of the proposed method, we emphasize the brightness contrast with Ends-in search stretching algorithm after removing noise from the initial ultrasonic images. Then we apply average binarization in vertical direction to extract candidate fascia areas. After removing other areas than fascia with morphological characteristics, the lost part in the fascia during the process is restored with such characteristic information and location information. Then the skin area is also removed with information from the arc appearing in convex filming and the candidate muscle areas are extracted by overlapping two results two way up-down search algorithm. Another noise removing process is done to determine the muscle area. In case of obtaining obscure result, after restoring the muscle area by smearing method, the thickness of the muscle is measured by min square method. The experiment verifies that the proposed method is sufficiently effective to analyze the size and shape of muscles in abdomen in ultrasonography than previously used methods.

Recognition of Car License Plate Using Geometric Information from Portable Device Image (휴대단말기 영상에서의 기하학적 정보를 이용한 차량 번호판 인식)

  • Yeom, Hee-Jung;Eun, Sung-Jong;WhangBo, Taeg-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.10
    • /
    • pp.1-8
    • /
    • 2010
  • Recently, the character image processing technology using portable device camera image at home and abroad are actively conducted, but Practical use are lower rate because of accuracy and time-consuming process problems. In this paper, we propose the license plate recognition method based on geometric information from portable device camera image. In the extracted license plate region we recognize characters using the chain code and the Thickness information through the cumulative projected edge after performing the pre-processing work considering the angle difference, the contrast enhancement and the low resolution from portable device camera image. The proposed algorithm is effective and accurate recognition by light and reducing the processing time. And, the results from the character recognition success rate was 95%. In the future, we will research about license plate recognition algorithm using long distance image or added motion blur image.

Extraction of Hypertension Blood flow of Brachial Artery from Color Doppler Ultrasonography by Using 4-directional Contour Tracking Algorithm and Enhanced FCM Method (4 방향 윤곽선 추적 알고리즘과 개선된 FCM 방법을 이용한 색조 도플러 초음파 영상에서 상완 동맥의 고혈압 혈류 추출)

  • Yu, Seong-won;Jung, Young-hun;Shim, Sung-bo;Kim, Hye-ran;Kim, Min-ji;Kim, Kwang Beak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.71-73
    • /
    • 2017
  • 본 논문에서는 4 방향 윤곽선 추적 기법과 히스토그램 분석 기법을 기반으로 한 개선된 FCM 알고리즘을 적용하여 색조 도플러 초음파 영상에서 상완 동맥의 혈류를 추출하고 분석하는 방법을 제안한다. 제안된 방법에서는 상완 동맥의 혈류를 정확히 추출하기 위해 전처리 과정으로 색조 도플러 초음파 영상 이외의 환자 정보가 있는 영역을 제거한 후, ROI 영역을 추출한다. 추출된 ROI 영역에서 영상의 최대 명암도를 임계치로 설정한 이진화 기법을 적용하여 ROI 영역을 이진화한다. 이진화된 ROI 영역에서 4 방향 윤곽선 추적 기법을 적용하여 상완 동맥이 존재하는 사다리꼴 형태의 영역을 추출한다. 색 정보를 분석한 히스토그램을 이용하여 특징점의 개수를 계산하고 계산된 특징점의 개수를 FCM 알고리즘의 초기 클러스터의 개수로 설정한 후, 추출된 사다리꼴 형태의 영역에 적용하여 양자화 한다. 양자화된 영역 중에서 빨간색으로 분류된 영역을 고혈압 영역으로 추출한다. 제안된 추출 방법을 20개의 색조 도플러 초음파 영상을 대상으로 실험한 결과, 20개의 색조 도플러 초음파 영상에서 18개의 색조 도플러 초음파 영상이 정확히 추출되었다.

  • PDF

2D LiDAR based 3D Pothole Detection System (2차원 라이다 기반 3차원 포트홀 검출 시스템)

  • Kim, Jeong-joo;Kang, Byung-ho;Choi, Su-il
    • Journal of Digital Contents Society
    • /
    • v.18 no.5
    • /
    • pp.989-994
    • /
    • 2017
  • In this paper, we propose a pothole detection system using 2D LiDAR and a pothole detection algorithm. Conventional pothole detection methods can be divided into vibration-based method, 3D reconstruction method, and vision-based method. Proposed pothole detection system uses two inexpensive 2D LiDARs and improves pothole detection performance. Pothole detection algorithm is divided into preprocessing for noise reduction, clustering and line extraction for visualization, and gradient function for pothole decision. By using gradient of distance data function, we check the existence of a pothole and measure the depth and width of the pothole. The pothole detection system is developed using two LiDARs, and the 3D pothole detection performance is shown by detecting a pothole with moving LiDAR system.

Extraction of Transverse Abdominis Muscle form Ultrasonographic Images (초음파 영상에서 복횡근 근육 추출)

  • Kim, Kwang-Baek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.341-346
    • /
    • 2012
  • In rehabilitation where ultrasonographic diagnosis is not popular, it could be subjective by medical expert's experience. Thus, it is necessary to develop an objective automative procedure in ultrasonic image analysis. A disadvantage of existing automative analytic procedure in musculoskeletal system is to designate an incorrect muscle area when the figure of fascia is vague. In this study, we propose a new procedure to extract more accurate muscle area in abdomen ultrasonic image for that purpose. After removing unnecessary noise from input image, we apply End-in Search algorithm to enhance the contrast between fascia and muscle area. Then after extracting initial muscle area by Up-Down search, we trace the fascia area with a mask based on morphological and directional information. By this tracing of mask movements, we can emphasize the fascia area to extract more accurate muscle area in result. This new procedure is proven to be more effective than existing methods in experiment using convex ultrasound images that are used in real world rehabilitation diagnosis.

Camera Model Identification Based on Deep Learning (딥러닝 기반 카메라 모델 판별)

  • Lee, Soo Hyeon;Kim, Dong Hyun;Lee, Hae-Yeoun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.10
    • /
    • pp.411-420
    • /
    • 2019
  • Camera model identification has been a subject of steady study in the field of digital forensics. Among the increasingly sophisticated crimes, crimes such as illegal filming are taking up a high number of crimes because they are hard to detect as cameras become smaller. Therefore, technology that can specify which camera a particular image was taken on could be used as evidence to prove a criminal's suspicion when a criminal denies his or her criminal behavior. This paper proposes a deep learning model to identify the camera model used to acquire the image. The proposed model consists of four convolution layers and two fully connection layers, and a high pass filter is used as a filter for data pre-processing. To verify the performance of the proposed model, Dresden Image Database was used and the dataset was generated by applying the sequential partition method. To show the performance of the proposed model, it is compared with existing studies using 3 layers model or model with GLCM. The proposed model achieves 98% accuracy which is similar to that of the latest technology.