• Title/Summary/Keyword: 면표적

Search Result 132, Processing Time 0.023 seconds

Optimum Field Size for the Whole Body Stereotactic Radiosurgery (전신 정위 방사선 치료시의 적정 조사면 크기)

  • 이병용;민철기;정원규;최은경
    • Progress in Medical Physics
    • /
    • v.13 no.1
    • /
    • pp.15-20
    • /
    • 2002
  • Optimum field size for the whole body stereotactic radiosurgery was studied. Dose distributions from the various sizes of targets (diameter 1cm to 7cm, icm interval) were used for this study. Planing scores, expressed as the Target Coverage Index (TCI), were calculated for various target Margin ranged 0cm to 0.5cm. Highest scores were obtained for no Margin to the target size. The target Margin -0.5cm to 0cm to the target showed best TCI the cases of the target size larger than 6cm diameter. No Margin or 0.5cm Margin generated best TCI for less than 2cm cases. Prescription to 80~90% gives best results.

  • PDF

Determination of Stereotactic Target Position with MR Localizer (자기공명영상을 이용한 두개부내 표적의 3차원적 위치결정)

  • 최태진;김옥배;주양구;서수지;손은익
    • Progress in Medical Physics
    • /
    • v.7 no.2
    • /
    • pp.67-77
    • /
    • 1996
  • Purpose: To get a 3-D coordinates of intracranial target position was investicated in axial, sagittal and coronal magnetic resonance imaging with a preliminary experimented target localizer. Material and methods : In preliminal experiments, the localizer is made of engineering plastic to avoid the distrubance of magnetic field during the MR image scan. The MR localizer displayed the 9 points in three different axial tomogram. The bright signal of localizer was obtjained from 0.1~0.3% of paramagnetic gadolinium/DTPA solution in T1WI or T2WI. In this study, the 3-D position of virtual targets were examined from three different axial MR images and the streotactic position was compared to that of BRW stereotactic system in CT scan with same targets. Results: This study provided the actual target position could be obtained from single scan with MRI localizer which has inverse N-typed 9 bars. This experiment was accomplished with shimming test for detection of image distortion in MR image. However we have not found the image distortion in axial scan. The maximum error of target positions showed 1.0 mm in axial, 1.3 mm for sagittal and 1.7 mm for coronal image, respectivelly. The target localization in MR localizer was investicated with spherical virtual target in skull cadaver. Furthermore, the target position was confirmed with CRW stereotactic system showed a 1.3 mm in discrepancy. Summary : The intracranial target position was determined within 1.7 mm of discrepancy with designed MR localizer. We found the target position from axial image has more small discrepancy than that of sagittal and coronal image.

  • PDF

세기조절방사선치료 조사면의 최소 조각 크기에 대한 치료중 표적 움직임의 효과

  • 서예린;이병용;안승도;이상욱;김종훈;신성수;신승애;최은경
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.37-37
    • /
    • 2003
  • 목적 : 일반적으로 세기조절방사선치료 조사면의 작은 조각 크기에 대해, 이상적인 플루언스 지도 혹은 치료계획장치로부터의 최적화된 결과에 가까운 선량분포에서 더 좋은 leaf sequence를 얻을 수 있다. 한편, 치료중 장기의 움직임이 가장 작은 조각 크기의 선택을 방해하는 문제는 항상 존재한다. 게다가, 전통적인 정지 조사면과 달리 표적이 움직이는 동안 조사면 자체도 움직이므로 움직이는 표적에 대한 세기조절방사선치료의 경우에서 적절한 표적 마진에 관한 질문이 제기되어왔다. 따라서, 이 연구에서는 조각 크기에 대한 치료중 표적 움직임의 효과를 연구하였다. 대상 및 방법 : 세기조절방사선치료 플루언스 지도에 대해, 다양한 크기 - 0.5$\times$0.5, 1.0$\times$1.0, $1.5\times$1.5, 2.0$\times$2.0, 3.0$\times$3.0, 4.0$\times$4.0, 5.0$\times$5.0 $ extrm{cm}^2$ - 의 정사각형 패턴들을 설계하였고, Leaf sequence 는 step-and-shoot 빔 전달 방법을 이용하였다. 인접 조각들 사이의 세기 비율은 0.2, 0.4, 0.6, 0.8, 1.0로 하였고, 표적 움직임은 범위가 0.5-2.0 cm인 사인곡선 형태로 가정하였다. 움직임 묘사를 위해 동적 leaf 의 움직임이 표적의 움직임 을 반영하도록 계산되었고 움직임의 효과를 분석하기 위해 필름선량측정을 수행하였다. 결과 : 인접 조각의 세기 비율은 모든 경우에서 저하되었고, 호흡 진폭의 반보다 작은 조각 크기에 대한 선량분포는 임상적으로 유의할만큼 저하된 세기 지도를 보였다. 조각에 대해 방사선 조사시간의 두 호흡주기이상에 대해서는, 표적 마진 주위의 선량분포가 통상적인 정지 조사면에서와 같았다. 결론 : 플루언스 지도에서 세기조절방사선치료 조각의 최소 크기는 치료중 장기 움직임을 고려한 후 선택되어야 한다. 조각에 대한 방사선 조사시간의 두 호흡주기이상에 대해서는, 표적 마진을 기존의 정지 조사면과 같게 정의할 수 있었다.

  • PDF

Submarine bistatic target strength analysis based on bistatic-to-monostatic conversion (양상태-단상태 변환 기반 잠수함 양상태 표적강도 해석)

  • Kookhyun Kim;Sung-Ju Park;Keunhwa Lee;Dae-Seung Cho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.138-144
    • /
    • 2024
  • This paper presents a bistatic to monostatic conversion technique to analyze the bistatic target strength of submarines. The technique involves determining the transmission path length of acoustic waves, which are emitted from a source, scattered off an underwater target, and eventually received by a receiver. By generating a corresponding virtual scattering surface, this method effectively transforms the target strength analysis problem from bistatic to monostatic. The converted monostatic target strength problem can be assessed using a well-established monostatic numerical methods. The bistatic target strength analysis for Benchmark Target Strength Simulation (BeTTSi), a widely used target strength model were performed. The results were compared with those calculated by boundary element methods and Kirchhoff approximation, and confirmed the validity and the practical applicability of the proposed analysis technique for evaluating submarine target strength.

Target Scattering Echo Simulation for Active Sonar System in the Geometric Optics Region (기하광학영역에서의 능동소나 표적신호합성)

  • 신기철;박재은;김재수;최상문;김우식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.91-97
    • /
    • 2001
  • Since the new field information of target signal is important in the development and verification of active sonar system, experimental method and simulation technique are widely used in order to analyze the detail characteristics of target scattered echoes. Therefore, in this paper, the scale target experiment is performed to develope and Improve the target signal simulation model. Since the experimental results show that the specular reflection is the major component among scattering mechanisms, the target signal simulation model based on the Geometric Optics Theory (GOT) is developed. Complex target is separated into simple shapes, known as canonical shape. The contribution from individual canonical shapes are summed with proper phase and amplitude to produce the target strength of the whole complex body. Simulated target signal is compared with the experimental results and discussed.

  • PDF

Estimation algorithm of ocean surface temperature flow based on Morphological Operation (형태학적 연산에 기반한 해수면 온도 분포 추정 알고리즘)

  • Gu, Eun-Hye;Cho, Woong-Ho;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.253-260
    • /
    • 2012
  • Target detection is very difficult with complex clutters in IRST(Infrared Search and Track) system for a long distance target. Especially sea-clutter and ocean-surface with non-uniform temperature distribution make it difficult to detect incoming targets in images obtained in sea environment. In this paper, we propose a novel method based on morphological method for estimation of ocean surface with non-uniform temperature flow. In order to estimate the exact ocean surface temperature flow, we divided it into upper and lower bound flow. And after estimating it, the final ocean surface temperature flow is derived by a mean value of the estimated results. Also, we apply the multi-weighted technique with a variety of sizes of structure elements to overcome sub-sampling effect by using morphology method. Experimental results for ocean surface images acquired from many different environments are compared with results of existing method to verify the performance of the proposed methods.

Target Signal Simulation in Synthetic Underwater Environment for Performance Analysis of Monostatic Active Sonar (수중합성환경에서 단상태 능동소나의 성능분석을 위한 표적신호 모의)

  • Kim, Sunhyo;You, Seung-Ki;Choi, Jee Woong;Kang, Donhyug;Park, Joung Soo;Lee, Dong Joon;Park, Kyeongju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.455-471
    • /
    • 2013
  • Active sonar has been commonly used to detect targets existing in the shallow water. When a signal is transmitted and returned back from a target, it has been distorted by various properties of acoustic channel such as multipath arrivals, scattering from rough sea surface and ocean bottom, and refraction by sound speed structure, which makes target detection difficult. It is therefore necessary to consider these channel properties in the target signal simulation in operational performance system of active sonar. In this paper, a monostatic active sonar system is considered, and the target echo, reverberation, and ambient noise are individually simulated as a function of time, and finally summed to simulate a total received signal. A 3-dimensional highlight model, which can reflect the target features including the shape, position, and azimuthal and elevation angles, has been applied to each multipath pair between source and target to simulate the target echo signal. The results are finally compared to those obtained by the algorithm in which only direct path is considered in target signal simulation.

Numerical Analysis of the Backscattering Amplitude for a Partially Buried Cylinder on a Flat Interface Using Method of Moments (모멘트법을 이용한 경계면에 부분적으로 파묻힌 실린더의 음향 후방산란에 대한 수치해석)

  • Baik, Kyungmin;Marston, Philip L.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.282-290
    • /
    • 2014
  • Though there have been advances in the numerical analysis of the acoustic scattering by smooth objects, numerical analysis of the acoustic scattering by the objects that are partially exposed on the interface are still rare. In determining the backscattering amplitude by a partially buried cylinder on a seabed, reverberation by the interface changes the feature of the scattering form function. Current study adopted the Method of moments (MoM) to provide the numerical analysis on the backscattering amplitude for a partially buried cylinder on a flat interface. Suggested numerical analysis showed the good agreements with the measurements and the analytic solution obtained by the Kirchhoff approximation. Numerical analysis described in the current study can be applied to the backscattering problem of any shape of the objects partially imbedded on a seabed by combining the reverberation from the seabed with the scattered wave from the objects.

Estimation of bearing error of line array sonar system caused by bottom bounced path (해저면 반사신호의 선 배열 소나 방위 오차 해석)

  • Oh, Raegeun;Gu, Bon-Sung;Kim, Sunhyo;Song, Taek-Lyul;Choi, Jee Woong;Son, Su-Uk;Kim, Won-Ki;Bae, Ho Seuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.412-421
    • /
    • 2018
  • The Line array sonar consisting of several hydrophones increases array gain and improves the performance for detecting the direction of the target compared to single hydrophone. However, line array sonar produces the bearing error that makes it difficult to determine the bearing of incoming source signal due to the relation between bearing angle of target and vertical angle of multipath signals. Vertical angles of multipath are varied with the geometry of receiver and target and various underwater environments, therefore it is necessary to consider the bearing error to estimate accurately the bearing of the target. In this study, acoustic modelling was performed to understand the effect of multipath signals on the target signal. The errors of bearing angle estimated from the bottom bounced signals are calculated with several environment. In addition, the expected bearing line, as a function of source-receiver range, compensated for the bearing error is predicted from the estimated bearing angle.

Generation of ISAR Image for Realistic Target Model Using General Purpose EM Simulators (범용 전자기파 시뮬레이터를 이용한 사실적 표적 모델에 대한 역합성 개구면 레이다 영상 합성)

  • Kim, Seok;Nikitin, Konstantin;Ka, Min-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.189-195
    • /
    • 2015
  • There are many research works on the SAR image generation using EM(Electro Magnetic) simulation. Particularly, there are several dedicated S/Ws for SAR image generation and analysis. But, most of them are not available to the public due to the reason for defense and security. In this paper, we describe the generation of ISAR images for a realistic target model using the general purpose EM simulator like FEKO. This method can benefit us many advantages like building the database of many targets for target recognition with cost-and-time effective way.