DOI QR코드

DOI QR Code

Numerical Analysis of the Backscattering Amplitude for a Partially Buried Cylinder on a Flat Interface Using Method of Moments

모멘트법을 이용한 경계면에 부분적으로 파묻힌 실린더의 음향 후방산란에 대한 수치해석

  • Baik, Kyungmin (Center for Fluid Flow and Acoustics, Korea Research Institute of Standards and Science, University of Science and Technology) ;
  • Marston, Philip L. (Department of Physics, Washington State University)
  • Received : 2014.03.12
  • Accepted : 2014.07.11
  • Published : 2014.09.30

Abstract

Though there have been advances in the numerical analysis of the acoustic scattering by smooth objects, numerical analysis of the acoustic scattering by the objects that are partially exposed on the interface are still rare. In determining the backscattering amplitude by a partially buried cylinder on a seabed, reverberation by the interface changes the feature of the scattering form function. Current study adopted the Method of moments (MoM) to provide the numerical analysis on the backscattering amplitude for a partially buried cylinder on a flat interface. Suggested numerical analysis showed the good agreements with the measurements and the analytic solution obtained by the Kirchhoff approximation. Numerical analysis described in the current study can be applied to the backscattering problem of any shape of the objects partially imbedded on a seabed by combining the reverberation from the seabed with the scattered wave from the objects.

매끈한 물체에 의한 음향산란에 관한 수치해석은 발전해 왔으나 경계면에 위로 부분적으로 드러나 있는 물체에 의한 음향산란에 대한 수치해석은 여전히 드물다. 해저면에 부분적으로 파묻힌 실린더의 후방산란진폭을 결정함에 있어 경계면에 의한 잔향은 표적의 산란 함수 특성을 변화시킨다. 본 연구는 평탄한 경계면에 부분적으로 파묻힌 실린더의 후방산란진폭에 대한 수치해석을 제시하기 위하여 모멘트법(Method of Moments)을 채택하였다. 제시된 수치해석은 측정 및 키르히호프 근사법으로 얻은 해석적인 해와 상당한 일치를 보여주었다. 본 연구에서 기술된 수치해석은 해저면에서의 잔향과 표적으로부터의 산란파를 결합시킴으로써 해저면에 부분적으로 파묻힌 어떠한 형상의 표적에 대한 후방산란 문제에도 적용될 수 있다.

Keywords

References

  1. A. Tesei, A. Maguer, W. L. J. Fox, R. Lim, and H. Schmidt, "Measurements and modeling of acoustic scattering from partially and completely buried, spherical shells," J. Acoust. Soc. Am. 112, 1817-1830 (2002). https://doi.org/10.1121/1.1509425
  2. K. Baik and P. L. Marston, "Kirchhoff approximation for a cylinder breaking through a plane surface and the measured scattering," IEEE J. Ocean. Eng. 33, 386-396 (2008). https://doi.org/10.1109/JOE.2008.920485
  3. A. F. Peterson, S. L. Ray, and R. Mittrar, Computational Methods for Electromagnetics (Wiley-IEEE press, New York, 1998), pp. 37-86.
  4. J. W. Choi, K. S. Yoon, J. Na, J. S. Park, and Y. N. Na, "Shallow water high-frequency reverberation model" (in Korean), J. Acoust. Soc. Kr. 21, 671-678 (2002).
  5. D. S. Jones, Acoustic and Electromagnetic Waves (Oxford, New York, 1986), pp. 65-66.
  6. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th Ed. (Dover, Washington D.C. 1965), pp. 357-358.
  7. A. L. Fetter and J. D. Walecka. Theoretical Mechanics of Particles and Continua, Dover Ed. (Dover, New York, 2003), pp. 337-338.,
  8. P. L. Marston, "Kirchhoff approximation for backscattering by partially illuminated circular cylinders: Two-dimensional case," J. Acoust. Soc. Am. 114, 2302 (2003).
  9. V. Twersky, "On scattering and reflection of sound by rough surfaces," J. Acoust. Soc. Am. 29, 209-225 (1957). https://doi.org/10.1121/1.1908834