• 제목/요약/키워드: 면역조절제

Search Result 186, Processing Time 0.03 seconds

Expression of HSP70 Immunoreactivity in EPO Treated Rat Kidney (콩팥에서 Erythropoietin 투여로 인한 HSP70의 발현 변화)

  • Jung, Ju-Young;Kim, Jin
    • Applied Microscopy
    • /
    • v.37 no.3
    • /
    • pp.167-174
    • /
    • 2007
  • Heat shock protein (HSP) 70 functions as a molecular chaperon and reduces stress-induced denaturation and aggregation of intracellular proteins. Erythropoietin (EPO) plays an important role during acute renal failure repair process by rapidly correcting anemia and enhancing renal tubular regeneration. The purpose of this study was to examine the effect of EPO treatment on renal HSP70 expression. Male Sprague-Dawley rats were injected rHUEPO. Kidney were preserved by in vivo perfusion with paraformaldehyde-lysine-periodate (PLP) and processed for immunohistochemistry and electron microscopy. In control kidney, HSP70 was expressed in the cortex, outer medulla and inner medulla. Especially, HSP immunoreactiviy was mainly founded in descending thin limb of outer medulla and inner medullary collecting duct. In EPO treated kidney, HSP70 expression markedly increased in the descending thin limb of outer medulla and newly detected in cortical collecting duct. Electron microscopy showed the presence of HSP immunoreactivity on the intracelluar vesicles and Golgi complex of descending thin limb and cortical collecting duct. These findings suggest that EPO treatment leads to new production of HSP70 in renal tubular cells, and induction of HSP70 by rHuEPO is causally related to protective function.

Effects of Regional Hyperthermia with Moderate Temperature on Cancer Treatment (국부 중등도 온열요법의 암치료 효과)

  • Kang, Chi-Dug;Kim, Sun-Hee
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1088-1096
    • /
    • 2016
  • Despite that moderate hyperthermia can exert various antitumor activities such as direct cytotoxic effects on tumor cells, effects on tumor vasculatures and immunological effects, hyperthermia has been usually combined with radiotherapy or chemotherapy due to its limited efficacy in cancer treatment, showing some positive clinical benefits with generally well-tolerated side effects. Since heat shock responses itself can interfere with the anti-tumor effects of hyperthermia, not all of these studies might have demonstrated positive clinical outcomes in cancer patients. Therefore, the negative anti-tumor effect of hyperthermia should be reduced to enhance the effectiveness of hyperthermia. Although the responses to heat stress of tumor tissues containing vessels, immune cells, connective tissues as well as cancer cells, are very complicated, it is needed to study in the near future if some clinically available drugs, which can modulate heat stress responses, can improve the efficacy of hyperthermia in patients with cancer. In this review, the effect of clinical hyperthermia centered on non-invasive external hyperthermia using radiofrequency at moderate temperature will be discussed, since it is the state-of-the-art technology in the current clinical practice of hyperthermia, and a moderate operational temperature is used to increase the therapeutic effectiveness of conventional therapy without additional toxicity to normal tissues.

Induction of Dectin-1 Expression and Intracellular Signal Transduction by β-Glucan of Ganoderma lucidum (불로초의 β-Glucan에 의한 Dectin-1 발현 유도와 세포 내 신호전달)

  • Ryu, Han Wook;Kim, Ha Won
    • The Korean Journal of Mycology
    • /
    • v.46 no.2
    • /
    • pp.161-176
    • /
    • 2018
  • Fungal ${\beta}$-glucan, known to have immunostimulatory and antitumor activities, can be recognized by host immune cells as one of the pathogen-associated molecular patterns (PAMPs). Although there are several reports on the diverse immunostimulatory activities of ${\beta}$-glucan, little is known about the intracellular signal transduction of ${\beta}$-glucan. Stimulation of RAW264.7 macrophage cells with ${\beta}$-glucan from Ganoderma lucidum induced the expressions of dectin-1, toll-like receptor 2 (TLR2), TLR4, and TLR6 at the transcription stage. Treatment with ${\beta}$-glucan also induced inflammatory mediators such as macrophage inflammatory proteins (MIP)-$1{\alpha}$, MIP-$1{\beta}$, MIP-$1{\gamma}$, interleukin (IL)-$1{\beta}$, and tumor necrosis factor (TNF)-${\alpha}$. Treatment of the cells with polymyxin B, an inhibitor of lipopolysaccharides (LPS), blocked the induction of inflammatory mediators in LPS- or ${\beta}$-glucan-stimulated systems. Pretreatment of the cells in our cell culture system with LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, or U0126, a mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) kinase (MEK)1/MEK2 inhibitor, led to a reduction in the induction of inflammatory mediators in a concentration-dependent manner. These results show that stimulation of the macrophage cells by ${\beta}$-glucan induced the expressions of both dectin-1 and TLRs. We also found that the PI3K/Akt and MEK pathways were involved in the induction of inflammatory mediators in macrophage cells during intracellular signal transduction of ${\beta}$-glucan.

In Vitro Antibacterial Effects of the Chimeric Peptides from Chicken and Pig Antimicrobial Peptide NK-Lysin (닭과 돼지의 항균펩타이드 NK-Lysin으로부터 조합된 펩타이드의 In Vitro 항균효과)

  • Hong, Yeojin;Lee, Gi Yong;Yang, Soo-Jin;Lillehoj, Hyun Soon;Hong, Yeong Ho
    • Korean Journal of Poultry Science
    • /
    • v.49 no.2
    • /
    • pp.69-77
    • /
    • 2022
  • Antimicrobial peptides (AMPs) play an important role in innate immunity against pathogenic infections. AMPs exterminate pathogenic bacteria by disrupting cell membranes or inhibiting intracellular molecules. NK-2, first identified in pigs and derived from NK-lysin, has antimicrobial effects against bacteria and parasites. In this study, chimeric peptides (cpNK) of chicken and pig NK-2 and cpNK-derived peptides (cpNK-a1 and cpNK-a2) were synthesized, and their antimicrobial effects against various pathogenic bacteria such as Escherichia coli, Salmonella spp., Listeria monocytogenes, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA) were investigated. The structure of chimeric peptides from chicken and pig NK-2, cpNK, include α-helix like NK-2 and peptide net charge was +9 like porcine NK-2. The cpNK peptide showed powerful bactericidal effects against most bacterial species, including MRSA, especially against gram-negative bacteria. Furthermore, cpNK-derived short peptides, cpNK-a1 and a2 also showed bactericidal activity, but the effects were weaker than those of cpNK. Therefore, we conclude that cpNK- and cpNK-derived short peptides have the potential to be used as antibiotic alternatives.

The Role of Glutamic Acid-producing Microorganisms in Rumen Microbial Ecosystems (반추위 미생물생태계에서의 글루탐산을 생성하는 미생물의 역할)

  • Mamuad, Lovelia L.;Lee, Sang-Suk
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.520-526
    • /
    • 2021
  • Microbial protein is one of the sources of protein in the rumen and can also be the source of glutamate production. Glutamic acid is used as fuel in the metabolic reaction in the body and the synthesis of all proteins for muscle and other cell components, and it is essential for proper immune function. Moreover, it is used as a surfactant, buffer, chelating agent, flavor enhancer, and culture medium, as well as in agriculture for such things as growth supplements. Glutamic acid is a substrate in the bioproduction of gamma-aminobutyric acid (GABA). This review provides insights into the role of glutamic acid and glutamic acid-producing microorganisms that contain the glutamate decarboxylase gene. These glutamic acid-producing microorganisms could be used in producing GABA, which has been known to regulate body temperature, increase DM intake and milk production, and improve milk composition. Most of these glutamic acid and GABA-producing microorganisms are lactic acid-producing bacteria (LAB), such as the Lactococcus, Lactobacillus, Enterococcus, and Streptococcus species. Through GABA synthesis, succinate can be produced. With the help of succinate dehydrogenase, propionate, and other metabolites can be produced from succinate. Furthermore, clostridia, such as Clostridium tetanomorphum and anaerobic micrococci, ferment glutamate and form acetate and butyrate during fermentation. Propionate and other metabolites can provide energy through conversion to blood glucose in the liver that is needed for the mammary system to produce lactose and live weight gain. Hence, health status and growth rates in ruminants can be improved through the use of these glutamic acid and/or GABA-producing microorganisms.

The Ability of Anti-tumor Necrosis Factor Alpha(TNF-${\alpha}$) Antibodies Produced in Sheep Colostrums

  • Yun, Sung-Seob
    • 한국유가공학회:학술대회논문집
    • /
    • 2007.09a
    • /
    • pp.49-58
    • /
    • 2007
  • Inflammatory process leads to the well-known mucosal damage and therefore a further disturbance of the epithelial barrier function, resulting abnormal intestinal wall function, even further accelerating the inflammatory process[1]. Despite of the records, etiology and pathogenesis of IBD remain rather unclear. There are many studies over the past couple of years have led to great advanced in understanding the inflammatory bowel disease(IBD) and their underlying pathophysiologic mechanisms. From the current understanding, it is likely that chronic inflammation in IBD is due to aggressive cellular immune responses including increased serum concentrations of different cytokines. Therefore, targeted molecules can be specifically eliminated in their expression directly on the transcriptional level. Interesting therapeutic trials are expected against adhesion molecules and pro-inflammatory cytokines such as TNF-${\alpha}$. The future development of immune therapies in IBD therefore holds great promises for better treatment modalities of IBD but will also open important new insights into a further understanding of inflammation pathophysiology. Treatment of cytokine inhibitors such as Immunex(Enbrel) and J&J/Centocor(Remicade) which are mouse-derived monoclonal antibodies have been shown in several studies to modulate the symptoms of patients, however, theses TNF inhibitors also have an adverse effect immune-related problems and also are costly and must be administered by injection. Because of the eventual development of unwanted side effects, these two products are used in only a select patient population. The present study was performed to elucidate the ability of TNF-${\alpha}$ antibodies produced in sheep colostrums to neutralize TNF-${\alpha}$ action in a cell-based bioassay and in a small animal model of intestinal inflammation. In vitro study, inhibitory effect of anti-TNF-${\alpha}$ antibody from the sheep was determined by cell bioassay. The antibody from the sheep at 1 in 10,000 dilution was able to completely inhibit TNF-${\alpha}$ activity in the cell bioassay. The antibodies from the same sheep, but different milkings, exhibited some variability in inhibition of TNF-${\alpha}$ activity, but were all greater than the control sample. In vivo study, the degree of inflammation was severe to experiment, despite of the initial pilot trial, main trial 1 was unable to figure out of any effect of antibody to reduce the impact of PAF and LPS. Main rat trial 2 resulted no significant symptoms like characteristic acute diarrhea and weight loss of colitis. This study suggested that colostrums from sheep immunized against TNF-${\alpha}$ significantly inhibited TNF-${\alpha}$ bioactivity in the cell based assay. And the higher than anticipated variability in the two animal models precluded assessment of the ability of antibody to prevent TNF-${\alpha}$ induced intestinal damage in the intact animal. Further study will require to find out an alternative animal model, which is more acceptable to test anti-TNF-${\alpha}$ IgA therapy for reducing the impact of inflammation on gut dysfunction. And subsequent pre-clinical and clinical testing also need generation of more antibody as current supplies are low.

  • PDF

TNF-α stimulated IL-8 and IL-10 expression in monocytes from patients with chronic granulomatous disease (만성육아종질환 환자 단핵구에서 TNF-α 자극에 의한 IL-8과 IL-10의 발현 양상)

  • Shin, Kyung-Sue
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.10
    • /
    • pp.1096-1101
    • /
    • 2008
  • Purpose : Patients with chronic granulomatous disease (CGD) have genetic mutations in a component of the NADPH oxidase enzyme that is necessary for the generation of the superoxide anion. The profound defect in innate immunity is reflected by the patients susceptibility to catalase-positive bacteria and fungi. In addition, CGD patients display signs of persistent inflammation, which is not associated only with deficient superoxide anion production. The aim of this study was to elucidate the cytokine responses in CGD patients after $TNF-{\alpha}$ stimulation. Methods : Heparinized blood samples were collected from 8 CGD patients and 10 healthy volunteers. Monocytes ($1{\times}10^6cell/well$) isolated by the magnet cell isolation system were incubated with a constant amount of $TNF-{\alpha}$ (10 ng/mL) at $37^{\circ}C$ for 6 h. Incubated cells were harvested at 60-min intervals for IL-8 and IL-10 mRNA analysis, and the supernatant was collected at the same intervals to determine IL-8 and IL-10 expression. Monocytes from healthy volunteers were also incubated with antioxidants followed by $TNF-{\alpha}$ stimulation for IL-8 and IL-10 expression. Results : In CGD patients, a high expression of IL-8 together with a significantly higher IL-10 expression than in the healthy controls was seen after $TNF-{\alpha}$ stimulation. Moreover, normal monocytes treated with antioxidants exhibited increased IL-8 responses. Conclusion : The absence of phagocyte-derived reactive oxidants in CGD might be associated with a dysregulated production of pro- and antiinflammatory cytokines. Additional research related to reactive oxidants is needed to clarify the role of cytokines in CGD patients.

The Effects of the High Pressure Boiled Extracts (HPBE) of the Ogol Chicken with Herbs on the Hormones, Cytokine, Specific Antibody of Serum in the Rat (오골계 증탕액 급여가 흰쥐의 혈중 호르몬, Cytokine 및 특이항체에 미치는 영향)

  • Chae Hyun-Seok;Ahn Chong-Nam;Yoo Young-Mo;Ham Jun-Sang;Lee Jong-Moon;Yoon Sang-Ki;Choi Yang-Il
    • Food Science of Animal Resources
    • /
    • v.24 no.3
    • /
    • pp.283-292
    • /
    • 2004
  • This study was conducted to investigate feeding effects of the high pressure boiled extracts (HPBE) of the Ogol chicken with herbs on glucose, hormones and immunological response (cytokine, specific antibody) of serum in the rat which fed either with normal feed (T$_1$), normal feed + herb HPBE (T$_2$), normal feed + Ogol chicken HPBE (T$_3$), normal feed + mixture of cross-bred Ogol chicken HPBE (T$_4$) hydrolyzed with Flavourzyme 0.1% for 35 days. During experimental period, there was a weak trend to have a higher glucose content for the T$_4$ group with 102.27${\pm}$5.95 mg/dL, but it was not significantly higher than other treatments. For insulin level, T$_1$ group showed numerically a slightly higher level with 6.79${\pm}$4.64 ${\mu}$IU/mL, but the difference was not significant in statistic term due likely to a large variation in comparison with other treatments. The treatments did not significantly alter testosterone level in rat plasma with 1.09, 1.46, 0.98, 1.13 ng/mL in T$_1$, T$_2$, T$_3$ and T$_4$, respectively. T$_4$ treatment increased the aldosterone level to a significantly (p<0.05) higher level (273.33 ng/dL) than other treatments. The extract treated rat showed a tendency in the cortisol level of lower levels than the control group, particularly, it was significantly (p<0.05) lower in T$_3$ group than other groups. T$_3$ and T$_4$ groups showed higher levels for interlukin-4 (IL-4) and anti-BSA IgG in immune cells and plasma. T$_2$, T$_3$ and T$_4$ treatments showed a slightly higher levels in v-interferon (INF-r) than the control, with a greater effect for T4 treatments. These results suggested that HPBE of the cross-bred Ogol chicken hydrolyzed with Flavourzyme increased immunological activity and decreased the concentration of cortisol and aldosterone hormones.

Laminin-1 Expression in Bone Marrow Stromal Cells of Cyclophosphamide-treated Rat (Cyclophosphamide가 흰쥐 골수의 기질세포에서 Laminin-1의 발현에 미치는 영향)

  • Lee, Chang-Hun;Chung, Ho-Sam;Paik, Doo-Jin;Hwang, Se-Jin;Kim, Won-Kyu;Youn, Jee-Hee;Kim, Chong-Kwan
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.385-398
    • /
    • 2002
  • The purpose of the present study is to investigate whether stromal cells supporting specific microenvironment for hematopoiesis of bone marrow are affected by toxicants and therapeutic drugs such as antibiotics and anticancer drugs and whether laminin-1 is associated with such effects. SD rats were intraperitoneally injected with 75 mg/kg of cyclophosphamide which is widely used to treat infant's solid tumor, leukemia and myeloma and sacrificed after 3 days, 1 week, 3 weeks or 5 weeks of injection. The bone marrow extracted and paraffin-sectioned was analyzed using immunohistochemical staining. A part of tissues was subjected to electron microscopy following reaction with rabbit anti-laminin antibody, biotinylated goat anti-rabbit IgG conjugated with 12 nm gold particles, and staining with uranyl acetate. 1. The bone marrow tissue at day 3 post injection with cyclophosphamide displayed dilated venous sinus, partial necrotic death, and decreased number of hematopoietic cells. Laminin-1 was intensively stained in the reticular and adipose tissues. 2. Up to 5 weeks post injection, laminin-1 was stained at a low level in the stromal tissue of bone marrow and the number of hematopoietic cell was increased. 3. Deposition of the gold particle which represents laminin-1 expression was observed at the highest level in the stromal cells of bone marrow obtained 3 days after injection, and decreased after 1 to 5 weeks. These results suggest that stromal cells which play a role in supporting microenvironment for bone marrow hematopoiesis augment induction of laminin-1 expression and activation upon administration of cyclophosphamide.

The Effect of Nebulized Frankincense Essential Oil in an OVA-Induced Allergic Asthma Mouse Model (프랑킨센스 에센셜 오일 흡입이 OVA로 유도된 알러지성 천식 모델 생쥐에 미치는 영향)

  • Lee, Hye-Youn;Kim, Kum-Ran;Kang, Sang-Mo
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.1
    • /
    • pp.93-104
    • /
    • 2010
  • In this study, we investigated the effects of frankincense essential oil (BSEO) on the immune cell change in the lung, BALF and PBMC using a mouse model of asthma. BALB/c mice after intraperitoneal OVA sensitization (day 1) were challenged intratracheally with OVA on day 14. Then, the asthma was induced by repeated OVA inhalation challenged. The asthma induced mice group inhaled 0.3% BSEO for 30 minutes per trial, three times a week, for 8 weeks using the nebulizer. After 12 weeks from the experiment, the mice was killed and the lung, bronchoalveolar lavage fluid (BALF) and peripheral blood mononuclear cell (PBMC) were obtained. Next, the change of immune cells inside the separated tissues was observed to identity the effects of BSEO on the allergic asthma mice. In conclusion, the hypersensitive reaction of airway to the bronchoconstrictor in the allergic asthma induced mice was effectively suppressed in Frankincense group, in Bermagot, Eucalyptus, Chamomile, Marjoram and Frankincense groups, the natural aromatic essential oil groups. Furthermore, it was also confirmed that the weight of lung, total number of alveolus cells and the number of BALF, MNL and DLN increased after inducing allergic asthma were reduced. BSEO suppressed the percentage of $CD3e^+/CD19^-$, $B220^+/CD23^+$ and $CD11b^+/Gr-1^+$ cells in the lung tissue of allergic asthma mice. Moreover, BSEO also reduced the percentage of $CD4^+/CD8^-$, $B220^+/CD23^+$ and $CD3^+/CCR3^+$ cells in BALF. In addition, the percentage of $CD3e^+/CD19^-$, $CD3^+/CD69^+$ and $B220^+/CD23^+$ cells in PBMC was reduced. The results of this study indicate that BSEO would be effective to treat allergic asthma by the immune control suppressing the activity of immune cells in each tissue.