• 제목/요약/키워드: 면대칭

검색결과 7건 처리시간 0.019초

구 주위의 비정상 면대칭 및 비대칭 유동의 특성 (CHARACTERISTICS OF UNSTEADY PLANAR-SYMMETRIC AND ASYMMETRIC FLOWS OVER A SPHERE)

  • 김동주
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.39-44
    • /
    • 2008
  • Numerical simulations of laminar flow over a sphere are conducted to investigate the effect of the Reynolds number on the characteristics of vortex shedding. The Reynolds numbers considered are between 300 and 475, covering unsteady planar-symmetric and asymmetric flows. Results show that the unsteady planar-symmetric flow can be categorized into two different regimes: single-frequency regime and multiple-frequency regime. The former has a single frequency component due to periodic shedding of the vortices with the same strength in every shedding cycle, while the latter has multiple frequency components due to cycle-to-cycle variation in the strength of shed vortices with the shedding angle fixed. The multiple-frequency planar-symmetric flow, which is newly found in the present study, occurs at Re=330${\sim}$360 between the single-frequency planar-symmetric flow and the asymmetric flow. On the other hand, the asymmetric flow occurs at Re${\geq}$365, where the vortices shed from the sphere show variation both in strength and shedding angle unlike the planar-symmetric flow. Also, it is shown that the breaking of planar symmetry is closely related to the imbalance of vortical strength between a pair of streamwise vortices.

병렬로 배열된 두 개의 구에서 발생하는 후류의 특성 연구 (WAKE CHARACTERISTICS BEHIND TWO SPHERES IN A SIDE-BY-SIDE ARRANGEMENT)

  • 김동주
    • 한국전산유체공학회지
    • /
    • 제12권4호
    • /
    • pp.61-67
    • /
    • 2007
  • Numerical simulation of laminar flow over two spheres in a side-by-side arrangement is carried out to investigate the effect of the inter-sphere spacing on the flow characteristics. The Reynolds numbers considered are 100, 250, and 300, covering the steady axisymmetric, steady planar-symmetric, and unsteady planar-symmetric flows in the case of a single sphere. Results show that the drag and lift coefficients and wake structures are significantly modified depending on both the Reynolds number and the spacing between the spheres. At Re=100, the flow is steady planar-symmetric irrespective of the spacing, but it shows some variation according to the spacing at Re=250 and 300. That is, the flow maintains planar symmetry of the single-sphere wake at large spacings, while it loses the symmetry at small spacings due to the generation of new asymmetric vortical structures. It is also shown that the drag and lift coefficients generally increase with decreasing inter-sphere spacing because the high pressure region is formed near the gap between the spheres.

직육면체를 지나는 층류 유동 (LAMINAR FLOW OVER A CUBOID)

  • 김동주
    • 한국전산유체공학회지
    • /
    • 제13권1호
    • /
    • pp.57-62
    • /
    • 2008
  • Laminar flows over a cube and a cuboid (cube extended in the streamwise direction) are numerically investigated for the Reynolds numbers between 50 and 350. First, vortical structures behind a cube and lift characteristics are scrutinized in order to understand the variation in vortex shedding characteristics with respect to the Reynolds number. As the Reynolds number increases, the flow over a cube experiences the steady planar-symmetric, unsteady planar-symmetric, and unsteady asymmetric flows. Similar to the sphere wake, the planar-symmetric flow over a cube can be divided into two different regimes: single-frequency regime and multiple-frequency regime. The former has a single frequency due to regular shedding of vortices with the same strength in time, while the latter has multiple frequency components due to temporal variation in the strength of shed vortices. Second, the effect of the length-to-height ratio of the cuboid on the flow characteristics is investigated for the Reynolds number of 270, at which planar-symmetric vortex shedding takes place behind a cube. With the ratio smaller than one, the flow over the cuboid becomes unsteady asymmetric flow, whereas it becomes steady flow for the ratios greater than one. With increasing the ratio, the drag coefficient first decreases and then increases. This feature is related to the flow reattachment on the side faces of the cuboid.

정육면체 주위 층류 유동에 근처 벽면이 미치는 영향 (WALL EFFECTS ON LAMINAR FLOW OVER A CUBE)

  • 김동주
    • 한국전산유체공학회지
    • /
    • 제16권1호
    • /
    • pp.83-89
    • /
    • 2011
  • Laminar flow over a cube near a plane wall is numerically investigated in order to understand the effects of the cube-wall gap on the flow characteristics as well as the drag and lift coefficients. The main focus is placed on the three-dimensional vortical structures and its relation to the lift force applied on the cube. Numerical simulations are performed for the Reynolds numbers between 100 and 300, covering several different flow regimes. Without a wall nearby, the flow at Re=100 is planar symmetric with no vortical structure in the wake. However, when the wall is located close to the cube, a pair of streamwise vortices is induced behind the cube. At Re=250, the wall strengthens the existing streamwise vortices and elongates them in the streamwise direction. As a result, the lift coefficients at Re=100 and 250 increase as the cube-wall gap decreases. On the other hand, without a wall, vortex shedding takes place at Re=300 in the form of a hairpin vortex whose strength changes in time. The head of hairpin vortex or loop vortex, which is closely related to the lift force, seems to disappear due to the nearby wall. Therefore, unlike at Re=100 and 250, the lift coefficient tends to decrease more or less as the cube approaches the wall.

학생들의 근접발달영역(ZPD)에 대한 탐구 (How to Investigate Students' Zone of Proximal Development (ZPD))

  • 김동중
    • 한국학교수학회논문집
    • /
    • 제12권4호
    • /
    • pp.493-508
    • /
    • 2009
  • 본 연구는 실제적 발단과 잠재적 발달간의 거리, 즉 근접발달영역의 특징들을 조사하는 것이다. 선시험과 후시험이 18명의 대학생들을 대상으로 실시되었으며 반힐레 수준 이론을 통해 실제적 발달이 같은 두 학생이 잠재적 발달 조사를 위해 선발되었다. 인지-의사소통이론을 바탕으로 삼차원 면대칭에 대한 두 학생의 담화 특징들을 확인하였다. 잠재적 발달 조사결과 두 학생사이에 상당한 차이가 있었다. 수학교육연구에서 학생들의 근접발달영역을 조사하기위한 연구방법론적 시사점을 제안한다.

  • PDF

횡 방향으로 회전하는 구 주위의 유동특성 (Laminar Flow past a Sphere Rotating in the Transverse Direction)

  • 김동주;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.83-86
    • /
    • 2002
  • Numerical simulations are conducted for laminar flow past a sphere rotating In the transverse direction, in order to investigate the effect of the rotation on the characteristics of flow over a sphere. The Reynolds numbers considered are Re=100, 250 and 300 based on the free-stream velocity and the sphere diameter, and the rotational speeds are in the range of $0{\leq}{\omega}{\leq}1$, where ${\omega}^{\ast}$ is the maximum velocity on the sphere surface normalized by the free-stream velocity. At ${\omega}^{\ast}=0$ (without rotation), the flow past the sphere experiences steady axisymmeoy, steady planar-symmetry and unsteady planar-symmetry, respectively, at Re=100, 250 and 300. However, with rotation, the flow becomes planar-symmetric for all the cases investigated and the symmetry plane is orthogonal to the axis of the rotation. The flow is also steady or unsteady depending on both the Reynolds number and the rotational speed, and the vortical structures behind the sphere are significantly modified by the rotation. For example, at Re=300, hairpin vortices completely disappear in the wake at ${\omega}^{\ast}=0.4\;and\;0.6$, and at ${\omega}^{\ast}=1$ vortical structures of a high frequency are newly generated due to the shear layer instability. It is also shown that with increasing rotational speed, the time-averaged drag and lift coefficients increase monotonically.

  • PDF

항공기용 프로펠러에서의 두께 및 하중소음 예측 (Prediction of Thickness and Loading Noise from Aircraft Propeller)

  • 유기완
    • 한국항공우주학회지
    • /
    • 제33권2호
    • /
    • pp.39-45
    • /
    • 2005
  • 본 연구에서는 현재 일반 프로펠러 항공기에 사용 중인 둥근 팁 형상을 갖는 Hartzell 사 제작 프로펠러에 대해서 두께소음과 하중소음에 대한 예측을 시도하였다. 음향장 해석에 앞서서 프로펠러 표면상에 존재하는 압력분포는 자유후류 패널 방법과 비정상 베르누이 방정식을 이용하여 구하였다. 음향장 해석을 위해서는 FW-H의 음향상사 법칙을 적용하였다. 주어진 프로펠러 형상과 운전 조건에 대한 소음 예측으로부터 두께소음은 프로펠러 회전면을 기준으로 전방과 후방이 서로 비슷한 면대칭 분포를 갖는 반면에, 하중소음은 프로펠러 후방의 소음이 전방에 비해서 더 크게 나오는 결과를 보여주었다. 일반적인 운전조건에서는 전반적으로 하중소음이 두께소음보다 지배적인 결과를 보여주었다.