• Title/Summary/Keyword: 멱변환 GARCH 모형

Search Result 6, Processing Time 0.02 seconds

Internet Traffic Forecasting Using Power Transformation Heteroscadastic Time Series Models (멱변환 이분산성 시계열 모형을 이용한 인터넷 트래픽 예측 기법 연구)

  • Ha, M.H.;Kim, S.
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.6
    • /
    • pp.1037-1044
    • /
    • 2008
  • In this paper, we show the performance of the power transformation GARCH(PGARCH) model to analyze the internet traffic data. The long memory property which is the typical characteristic of internet traffic data can be explained by the PGARCH model rather than the linear GARCH model. Small simulation and the analysis of the real internet traffic show the out-performance of the PARCH MODEL over the linear GARCH one.

Volatility-nonstationary GARCH(1,1) models featuring threshold-asymmetry and power transformation (분계점 비대칭과 멱변환 특징을 가진 비정상-변동성 모형)

  • Choi, Sun Woo;Hwang, Sun Young;Lee, Sung Duck
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.713-722
    • /
    • 2020
  • Contrasted with the standard symmetric GARCH models, we consider a broad class of threshold-asymmetric models to analyse financial time series exhibiting asymmetric volatility. By further introducing power transformations, we add more flexibilities to the asymmetric class, thereby leading to power transformed and asymmetric volatility models. In particular, the paper is concerned with the nonstationary volatilities in which conditions for integrated volatility and explosive volatility are separately discussed. Dow Jones Industrial Average is analysed for illustration.

Power transformation in quasi-likelihood innovations for GARCH volatility (금융 시계열 변동성 추정을 위한 준-우도 이노베이션의 멱변환)

  • Sunah, Chung;Sun Young, Hwang;Sung Duck, Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.6
    • /
    • pp.755-764
    • /
    • 2022
  • This paper is concerned with power transformations in estimating GARCH volatility. To handle a semi-parametric case for which the exact likelihood is not known, quasi-likelihood (QL) rather than maximum-likelihood method is investigated to best estimate GARCH via maximizing the information criteria. A power transformation is introduced in the innovation generating QL estimating functions and then optimum power is selected by maximizing the profile information. A combination of two different power transformations is also studied in order to increase the parameter estimation efficiency. Nine domestic stock prices data are analyzed to order to illustrate the main idea of the paper. The data span includes Covid-19 pandemic period in which financial time series are really volatile.

Analyzing financial time series data using the GARCH model (일반 자기회귀 이분산 모형을 이용한 시계열 자료 분석)

  • Kim, Sahm;Kim, Jin-A
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.3
    • /
    • pp.475-483
    • /
    • 2009
  • In this paper we introduced a class of nonlinear time series models to analyse KOSPI data. We introduce the Generalized Power-Transformation TGARCH (GPT-TGARCH) model and the model includes Zakoian (1993) and Li and Li (1996) models as the special cases. We showed the effectiveness and efficiency of the new model based on KOSPI data.

  • PDF

On Asymmeticity for Power Transformed TARCH Model

  • Kim, Sahm-Yong;Lee, Sung-Duck;Jeong, Ae-Ran
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.2
    • /
    • pp.271-281
    • /
    • 2005
  • Zokian(1993) and Li and Li(1996) developed TARCH(Threshold ARCH) model, considering the asymmetries in volatility. The models are based on Engle(1982)'s ARCH model and Bollerslev(1986)'s GARCH model. However, two TARCH models can be expressed a common model through Box Cox Power transformation, which was used by Higgins and Bera(1992) for developing NARCH(nonlinear ARCH) model. This article shows the PTARCH(Power transformation TARCH) model is necessary in some condition, and it checks the fact that PTARCH model has better performance comparing estimates and RMSE(Root Mean Square Error) with those of Zakoian's TARCH model and Li and Li's TARCH model. PTARCH model would give contribution in asymmetric study as well as heteroscedastic study.

  • PDF

Evidence of Taylor Property in Absolute-Value-GARCH Processes for Korean Financial Time Series (Absolute-Value-GARCH 모형을 이용한 국내 금융시계열의 Taylor 성질에 대한 사례연구)

  • Baek, J.S.;Hwang, S.Y.;Choi, M.S.
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.1
    • /
    • pp.49-61
    • /
    • 2010
  • The time series dependencies of Financial volatility are frequently measured by the autocorrelation function of power-transformed absolute returns. It is known as the Taylor property that the autocorrelations of the absolute returns are larger than those of the squared returns. Hass (2009) developed a simple method for detecting the Taylor property in absolute-value-GAROH(1,1) (AVGAROH(1,1)) model. In this article, we fitted AVGAROH(1,1) model for various Korean financial time series and observed the Taylor property.