• Title/Summary/Keyword: 메틸 메타크릴레이트

Search Result 78, Processing Time 0.029 seconds

Surface and Chemical Properties of Surface-modified UHMWPE Powder and Mechanical Properties of Self Curing PMMA Bone Cement Containing UHMWPE Powder I. Effect of MMA/Xylene Contents on Surface Modification of UHMWPE (표면개질된 초고분자량 폴리에틸렌 분말의 표면과 화학적 특성 및 이를 함유하는 상온 경화용 폴리(메틸 메타크릴레이트) 뼈 시멘트의 기계적 특성 I. 메틸 메타크릴레이트/자일렌 함량에 따른 초고분자량 폴리에틸렌의 표면 개질 효과)

  • 양대혁;윤관희;김순희;이종문;강길선
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.77-85
    • /
    • 2004
  • It has been widely used ultra high molecular weight polyethylene (UHMWPE) for the biomaterials due to its excellent mechanical properties and biocompatibility. In the case of blend of UHMPE with another polymeric biomaterials, however, UHMWPE might have low blend compatibility due to surface inertness. In this study, in order to improve the mechanical properties of poly(methyl methacrylate) (PMMA) bone cement by means of the impregnation of UHMWPE powder, we developed the novel surface modification method by the mixture of methyl methacrylate (MMA) and xylene. We investigated the variation of composition of MMA/xylene. It was confirmed by the analysis of Fourier transform infrared-attenuated total reflectance, scanning electron microscope, universal transverse mercator, and digital thermometer. The maximum mechanical strength of surface modified UHMWPE powder impregnated PMMA bone cement compound was observed the ratio of 1 : 1 (v/v%) MMA/xylene. Also its curing temperature decreased from 103 $^{\circ}C$ to 58 ∼ 73 $^{\circ}C$ The mechanism of surface modification of UHMWPE powder by the mixture of MMA/xylene has been proposed.

Microphase Separation and Crystallization in Binary Blends Consisting of Poly (methyl methacrylate)-block-Polystyrene Copolymer and Poly (vinylidene fluoride) (폴리(메틸 메타크릴레이트)-폴리스티렌 이종 블록 공중합체/폴리(비닐리덴 플루오라이드) 블렌드의 미세 상분리와 결정화)

  • 김지선;이광희;조성무;류두열;김진곤
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.509-518
    • /
    • 2004
  • Microdomain structures and crystallization behavior of the binary blends consisting of an asymmetric block copolymer and a homopolymer were investigated using small-angle X-ray scattering (SAXS), optical micro scope (OM) and differential scanning calorimetry (DSC). Poly(methyl methacrylate)-block-polystyrene block copolymer (PMMA-b-PS) (weight fraction of PMMA =0.53) was mixed with low molecular weight poly(vinylidene fluoride) (PVDF). As the PVDF concentration was increased, the morphological change from a lamellar to a cylindrical structure occurred. The crystallization of PVDF significantly disturbed the orientation of the pre-existing microdomain structure, resulting in a poorly ordered morphology. In the blends, PVDF exhibited unique crystallization behavior due to the PMMA block which is preferentially miscible to PVDF and the space constraint imposed by the microdomains.

Berkovich 팁을 이용한 PMMA의 초미세 가공에서 가공속도가 변형거동에 미치는 영향

  • 윤성원;김현일;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.147-147
    • /
    • 2004
  • 폴리메틸메타크릴레이트(polymethylmethacrylate, PMMA)는 아크릴레이트계 고분자이자 열가소성 플라스틱으로써 LCD용 도광판, 콘택트렌즈, 치과용 레진, DVD 디스크용 소재, 나노임프린트용 피가공재, 나노리소그래피 공정용 레지스트 등 많은 분야에서 활발히 사용되고 있다. PMMA 와 같은 점소성 점탄성 소재의 기계적 성질 측정 및 가공을 위해서는, 응력완화 (stress relaxation), 크립 (creep)등과 같은 시간의존적 변형거동에 대한 연구가 선행되어야 한다.(중략)

  • PDF

Preparation of Polysiloxane Composite Films with Microphase-Separated Silicone Oiol by Photocrosslinking (광가교 반응에 의한 미세 상 분리된 실리콘 오일을 함유하는 폴리실록산 복합체 필름의 제조)

  • 이정분;김정수;강영구;김동욱;이창진
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.3-8
    • /
    • 2003
  • Polysiloxanes with methacrylate groups at both terminals were synthesized by a hydrosilylation reaction between allyl methacrylate and hydride-terminated polysiloxanes. The polysiloxane methacrylates with high molecular weights could be prepared through the reaction of polysiloxane methacrylates and octamethylcyclotetrasiloxane with an acid catalyst. The structures of the prepared polysiloxane methacrylates were verified by $^1$H- and $^{29}Si-NMR.$ The polysiloxane methacrylates were freely miscible with silicone oils. Polysiloxane films with microphase-separated liquid silicone oil were prepared by photo-crosslinking the mixture of polysiloxane methacrylates and silicone oil. Scanning electron microscopy (SEM) of the films showed that the size of silicone oil droplets became smaller with a lower loading of silicone oil, lower molecular weight of polysiloxane methacrylate, and lower molecular weight of silicone oil.

Enzymatic Synthesis of Methyl Fructoside Acrylate and Methacrylate (메틸프룩토시드 아크릴레이트와 메타크릴레이트의 효소적 합성)

  • Sung, Duk-Yong;Kim, Hae-Sung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.1
    • /
    • pp.89-94
    • /
    • 2000
  • Methyl fructoside acrylate and methacrylate were synthesized by lipase-catalyzed glycosylation of acrylic acid, methacrylic acid and vinyl methacrylate with ${\beta}$-methyl fructoside in t-butanol as a reaction medium. From the optimum conditions of enzymatic synthesis for acrylate and methacrylate, we obtained 78% conversion for methyl fructoside acrylate and 93% conversion for methyl fructoside methacrylate. The polymerizable sugar acrylates have potential application as biomedical polymer such as hodrogel contact lens.

  • PDF

Homopolymer Distribution in Polystyrene - Poly(methyl methacrylate) Diblock Copolymer (폴리스티렌-폴리(메틸 메타크릴레이트) 이종 블록 공중합체 내의 단일중합체 분포)

  • Hong, Sung-Ho;Lee, Eun-Ji;Song, Kwon-Bin;Lee, Kwang-Hee
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.531-536
    • /
    • 2011
  • Homopolymer distribution in block copolymer/homopolymer blends was investigated as a function of homopolymer concentration and homopolymer molecular weight. The deuterated poly(methyl methacrylate) or polystyrene was blended with a deuterated polystyrene-poly(methyl methacrylate) diblock copolymer up to a concentration of 20 wt%. Samples were characterized by small-angle X-ray scattering (SAXS), neutron reflectivity and transmission electron microscopy. The block copolymer with a thin-film geometry formed alternating lamellar microdomains oriented parallel to the substrate surface. By adding the homopolymer, the microdomain structure was significantly disturbed. As a consequence, a poorly ordered morphology appeared when the homopolymer concentration exceeded 15 wt%. Increasing the homopolymer concentration and/or the homopolymer molecular weight caused the microdomains to swell less uniformly, resulting in segregation of the homopolymer toward the middle of the microdomains.

Preliminary Investigation into the Use of Methyl Methacrylate(MMA)-Based Materials for Road Repair (메틸 메타크릴레이트 기반 도로 보수재 개발을 위한 기초 연구)

  • Ji, Sung-Jun;Pyeon, Su-Jeong;Choi, Byung-Cheol;Kim, Jae-Hwan;Kim, Do-Su;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2024
  • This research explores the potential of methyl methacrylate(MMA) as a material for road repair applications. It specifically examines two MMA formulations, referred to as type A and type B, in relation to their performance on concrete substrates. The evaluation criteria included drying time, tensile bond strength, and resistance to alkali. The condition of the substrate surface was varied across three curing environments: constant temperature and humidity(R), immersion in water(W), and immersion in water with chloride ions(N). The findings indicate that type B MMA exhibits a quicker drying time and superior resistance to alkali compared to type A. While type A demonstrated greater tensile bond strength, it failed to maintain adhesion with the concrete base. Based on the parameters tested in this study, type B MMA emerges as the more favorable option for road repair contexts. Nonetheless, the study underscores the necessity for additional testing on asphalt substrates to fully assess the material's durability and applicability for long-term road maintenance.

Study on Recycling Technology of Waste Artificial Marble using Starch (전분을 이용한 폐인조대리석의 재활용 기술에 관한 연구)

  • Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.6
    • /
    • pp.433-440
    • /
    • 2018
  • The pyrolysis has been universally applied to recycle the waste artificial marble. However, the existing heat treatment equipment has relatively low heat transfer efficiency into the inner part of the waste artificial marble. Besides, it leads to unnecessary excessive gas during the partial carbonization of the polymethyl methacrylate (PMMA) and raises the risk of fire due to heat at an extremely high temperature. This study suggests the process of pyrolysis at the formation state after adding the starch to waste artificial marble to overcome above-mentioned problems. As the result of experiments, this method showed that the pyrolysis of waste artificial marble was greatly improved at comparatively low temperature condition of $350^{\circ}C$. Moreover, it also manifested the effect on securing the stability and energy savings necessary for the recovery of methyl methacrylate (MMA) and ${\alpha}$-alumina (${\alpha}-Al_2O_3$).

Spectroscopic Analysis of the Remote-plasma-polymerized Methyl Methacrylate Film (원격 플라즈마 중합된 메틸메타크릴레이트 필름의 분광학적 분석)

  • Seomoon, Kyu
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.49-54
    • /
    • 2021
  • Plasma-polymerized methyl methacrylate (MMA) thin films were synthesized by remote plasma, and effects of plasma power, reaction pressure and direct-indirect plasma on the growth rate and chemical bonding were investigated with alpha-step, FT-IR, XPS and Langmüir probe method. As the plasma power and pressure increased, the tendency of growth rate showed maximum value at a certain range. FT-IR and XPS analyses revealed that composition ratio of C/O and hydrocarbon (C-C) % in the deposited films increased with plasma power, but ester (COO) C % decreased with it. Direct plasma method was effective for fast growth rate, but indirect plasma method was favorable for maintaining the chemical structure of MMA.