• Title/Summary/Keyword: 메탄생성

Search Result 468, Processing Time 0.03 seconds

The Origin of Diamonds (II). Theoretical Study

  • R. Everett Langford
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.3
    • /
    • pp.138-148
    • /
    • 1978
  • A discussion of the various theories of natural diamond formation is given. Experimental data from mass spectrometric analysis of included gases is related to theoretical data on the carbon-hydrogen-oxygen gas phase under geologic conditions.Possible temperature-pressure conditions for natural diamond formation are proposed.

  • PDF

Effects of Supplementation of Mixed Methanogens and Rumen Cellulolytic Bacteria on Biochemical Methane Potential with Pig Slurry (양돈슬러리를 이용한 혐기소화에서 미생물 첨가가 메탄발생에 미치는 영향)

  • Kim, Ji-Ae;Yoon, Young-Man;Jeong, Kwang-Hwa;Kim, Chang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1049-1057
    • /
    • 2012
  • The study investigated the biochemical methane potential (BMP) assay of pig slurry supplemented with mixed methanogens and cellulolytic bacteria to improve anaerobic digestion for methane production. For the BMP assay, 7 different microbial supplementation groups consisted of the cultures of mixed methanogens (M), Fibrobacter succinogenes (FS), Ruminococcus flavefaciensn (RF), R. albus (RA), RA+FS, M+RA+FS, and control. The cultures were added in the batch reactors with the increasing dose levels of 1% (0.5 mL), 3% (1.5 mL) and 5% (2.5 mL). Incubation for the BMP assay was carried out for 60 days at $38^{\circ}C$ using anaerobic digestate obtained from an anaerobic digester with pig slurry as inoculum. In results, 5% RF and RA+FS increased total biogas up to 8.1 and 8.4%, respectively, compared with that of control (p<0.05). All 5% microbial culture supplements significantly increased methane production up to 12.1~17.9% compared with that of control (p<0.05). Total solid (TS) and volatile solid (VS) digestion efficiencies showed no relationship to the increased supplementation levels of microbial cultures. After incubation, pH values in all treatment groups ranged between 7.527 and 7.657 indicating that methanogensis was not inhibited during the incubation. In conclusion, the results indicated that both hydrolysis and methanogenesis stages for methane production in anaerobic batch reactors were influenced by the supplemented microorganisms due to the chemical characteristics of pig slurry, but only the 5% supplementation level of all microbial culture supplements used in the experiment affected methane production.

Changes in Methane Production in Coastal Mud Flat under Different Temperature and Salinity (온도 증가와 염도 감소에 따른 갯벌토양에서 메탄발생량의 변화)

  • Kim, Young Joo;Jung, Soo Hyun;Kang, Ho jeong
    • Journal of Wetlands Research
    • /
    • v.8 no.4
    • /
    • pp.41-47
    • /
    • 2006
  • Global climatic changes are expected to influence various biogeochemical processes in wetland ecosystems. In particular, coastal mud flat is anticipated to be affected directly by temperature increase as well as indirectly by a sea level rise and changes in precipitation. This study aimed to determine changes in methane production under different temperature and salinity by employing a laboratory-scale manipulation experiment. Soil samples were collected from a mud flat in Dong-Gum Kang-Hwa island in winter and two types of experiments were conducted. In the first experiment soil samples at 0-5 cm, 5-10 cm depth were incubated under same salinity with pore water and diluted salinity to 50 % of natural condition for 20 days and methane production was measured every other days. In the second experiment, soil samples at 5-10 cm depth were incubated in different temperature, $5^{\circ}C$ and $15^{\circ}C$, under same salinity conditions with first experiment for 31 days and methane production was measured. Results of the first experiment revealed that higher amount of methane was produced at 5-10 cm depth, and salinity effect was predominant at the end of the experiment. The second experiment showed that methane production was higher in $15^{\circ}C$ than $5^{\circ}C$. In addition, methane production was higher when sea water diluted to 50 % compared to control. Global climatic changes are expected to influence various biogeochemical processes in wetland ecosystems. In particular, coastal mud flat is anticipated to be affected directly by temperature increase as well as indirectly by a sea level rise and changes in precipitation. This study aimed to determine changes in methane production under different temperature and salinity by employing a laboratory-scale manipulation experiment. Soil samples were collected from a mud flat in Dong-Gum Kang-Hwa island in winter and two types of experiments were conducted. In the first experiment soil samples at 0-5 cm, 5-10 cm depth were incubated under same salinity with pore water and diluted salinity to 50 % of natural condition for 20 days and methane production was measured every other days. In the second experiment, soil samples at 5-10 cm depth were incubated in different temperature, $5^{\circ}C$ and $15^{\circ}C$, under same salinity conditions with first experiment for 31 days and methane production was measured. Results of the first experiment revealed that higher amount of methane was produced at 5-10 cm depth, and salinity effect was predominant at the end of the experiment. The second experiment showed that methane production was higher in $15^{\circ}C$ than $5^{\circ}C$. In addition, methane production was higher when sea water diluted to 50 % compared to control. These results suggest that methane production is highly influenced by changes in temperature and salinity in coastal mud flat. And that global climatic change may induce biological feedback by affecting production of another greenhouse gas, namely methane from coastal mud flat.

  • PDF

Characteristics of PCE Reductive Dechlorination using Benzoate as an Electron Donor (벤조산염을 전자공여체로 이용한 PCE의 환원성 탈염소화 특성)

  • Lee, Il-Su;Bae, Jae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.292-299
    • /
    • 2006
  • Batch experiments were performed to evaluate the effects of the electron donor dosage and the initial biomass on the reductive dechlorination of perchloroethene(PCE) with benzoate as an electron donor. When benzoate was added less than the theoretical requirement for dechlorination(electron donor/acceptor ratio=0.5 and 1), the dechlorination efficiency increased from 71% to 94.3% with the increase in benzoate dosage, but the fraction of electron equivalent utilized for dechlorination decreased from 92.7% to 79.6%. Methane production was observed when the hydrogen concentration was higher than the threshold value(10 nM) after PCE and trichloroethene (TCE) were reduced to cis-1,2-dichloroethene(cDCE). When benzoate was added more than the theoretical requirement, the residual hydrogen converted into methane after the completion of dechlorination. The increase in the seeding biomass shortened the lag time for dechlorination, but it did not affect the maximum dechlorination rate as it was mainly governed by the benzoate fermentation rate. When the seeding biomass concentration was high, active dechlorination during the early period increased dechlorination efficiency while decreasing methane production.

Development of an Environmental Friend Additive Using Antibacterial Natural Product for Reducing Enteric Rumen Methane Emission (항균활성 천연물질을 이용한 반추위 메탄저감용 친환경 첨가제 개발)

  • Lee, A-Leum;Yang, Jinho;Cho, Sang-Buem;Na, Chong-Sam;Shim, Kwan-Seob;Kim, Young-Hoon;Bae, Gui-Seck;Chang, Moon-Baek;Choi, Bitna;Shin, Su-Jin;Choi, Nag-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.3
    • /
    • pp.491-502
    • /
    • 2014
  • The present study was conducted to investigate effective starter culture to improve biological activity of Asarum sieboldii. Antibacterial activity, antioxidant activity and reduction of enteric rumen methane production were used as criterions for biological activity. Ground A. sieboldii was added in MRS broth at 10% (w/v) and fermented by different starter cultures. Weissella confusa NJ28, Weissella cibaria NJ33, Lactobacillus curvatus NJ40, Lactobacillus brevis NJ42, Lactobacillus plantarum NJ45 and Lactobacillus sakei NJ48 were used for starter culture strains. Each starter culture was inoculated with 1% (v/v) ratio and fermentation was performed at $30^{\circ}C$ with agitation (150 rpm) for 48 h. MRS broth for the control was employed without starter culture. Then the fermentation growth was dried and extracted using ethyl alcohol. The growth of starter culture was detected at NJ40, NJ42, NJ45 and NJ48. And the highest cell growth was found in NJ40. Antibacterial activity against to Staphylococcus aureus, Listeria monocytogens, Mannheimia haemolytica and Salmonella gallinarum were observed in the extract fermented by NJ40 and NJ45. All treatments showed antioxidant activities, however, there were no significant differences (p>0.05). In in vitro rumen fermentation, negative control (NC) and positive control (PC) were assigned to without extract and with non-fermented A. sieboldii extract. Significant suppression of gas productions were detected in positive control and treatments compared to negative control (p<0.05). However, total volatile fatty acid production was not suppressed. Significant methane reduction per total volatile fatty acid productions were found in positive control and NJ45 treatment (p<0.05). The present study suggested a fermentation of A. sieboldii using NJ45 strain could improve its biological activity and make possible for its use in bio additive for enteric rumen methane mitigation without suppression of animal productivity.

Influence of Electrode Spacing on Methane Production in Microbial Electrolysis Cell Fed with Sewage Sludge (하수슬러지를 기질로 하는 미생물전기분해전지에서 전극간 거리가 메탄 생산에 미치는 영향)

  • Im, Seongwon;Ahn, Yongtae;Chung, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.12
    • /
    • pp.682-688
    • /
    • 2015
  • Effect of electrode spacing on the performance of microbial electrolysis cells(MECs) for treating sewage sludge was investigated through lab scale experiment. The reactors were equipped with two pairs of electrodes that have a different electrode spacing (16, 32 mm). Shorter electrode distance improved the overall performance of MEC system. With the 16 mm of electrode distance, the current density was $3.04{\sim}3.74A/m^3$ and methane production was $0.616{\sim}0.804Nm^3/m^3$, which were higher than those obtained with 32 mm of electrode spacing ($1.50{\sim}1.82A/m^3$, $0.529{\sim}0.664Nm^3/m^3$). The COD removal was in the range of 34~40%, and the VSS reduction ranged 32~38%. As the current production increased, VSS reduction and methane production were increased possibly due to the improved bioelectrochemical performance of the system. Methane production was more affected by current density than VSS reduction. These results imply that the reducing the electrode spacing can enhance the methane production and recovery from sewage sludge with the decreased internal resistance, however, it was not able to improve VSS reduction of sewage sludge.

In vitro Anti-inflammatory Activity of the Artemisia fukudo Extracts in Murine Macrophage RAW 264.7 Cells (큰비쑥(Artemisia fukudo) 추출물의 murine macrophage RAW 264.7 세포에서 in vitro 항염효과)

  • Yoon, Weon-Jong;Lee, Jung-A;Kim, Kil-Nam;Kim, Ji-Young;Park, Soo-Yeong
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.464-469
    • /
    • 2007
  • The present study describes the preliminary evaluation of the anti-inflammatory activities of Artemisia fukudo extracts. The 80% ethanol extract of A. fukudo was sequentially fractionated with n-hexane, dichloromethane, ethylacetate, and butanol. In order to effectively screen for anti-inflammatory agents, we first examined the extracts’ inhibitory effects on the production of pro-inflammatory cytokines activated with lipopolysaccharide. Moreover, we examined the inhibitory effects of the A. fukudo extracts on pro-inflammatory factors (NO, iNOS, COX-2, and $PGE_{2}$) in murine macrophage RAW 264.7 cells. The protein levels were determined by immunoblotting. Of the sequential solvent fractions, the n-hexane and dichloromethane fractions inhibited the mRNA expression of pro-inflammatory cytokines (TNF-${\alpha}$, IL-$1{\beta}$, and IL-6), production of NO and $PGE_{2}$, and the protein levels of iNOS and COX-2. These results suggest that A. fukudo may have signifIcant effects on inflammatory factors, and may be a potential anti-inflammatory therapeutic plant.

Efficiency of methane production from pig manure slurry using anaerobic digestor combined with compost filtration bed (퇴비단 여과상이 부착된 혐기소화조를 이용한 돈분뇨 슬러리 메탄생산 효율분석)

  • Jeong, Kwang-Hwa;Khan, Modabber Ahmed;Choi, Dong-Yoon;Lee, Dong-Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.1
    • /
    • pp.53-61
    • /
    • 2013
  • The characteristics of methane production from pig manure slurry was investigated using anaerobic digestor combined with compost filtration bed. In this study, raw pig manure slurry was digested in mesophilic rectangular digester (effective volume $250m^3$) for 25 days and anaerobic digestion wastewater was filtered through compost filtration bed, which is composed of double layer, sawdust and chaff. The characteristics of anaerobic digestion wastewater were BOD 1,800 mg/L, COD 3,500 mg/L, SS 11,800 mg/L, T-N 1,200 mg/L and T-P 350 mg/L. After the filtration process, the contents of BOD, COD, SS, T-N and T-P of the anaerobic digestion wastewater were reduced by 97%, 62%, 89%, 39% and 57%, respectively. The concentrations of N, $P_2O_5$, and $K_2O$ of the leachate were 1,024, 111 and 407 mg/L, respectively. However, there was no odor emitted from the leachate.

Geochemistry of the hydrocarbon gases in the Pohang Area (포항 지역 지하수에 분포하는 탄화수소 가스의 지화학)

  • Lee Youngjoo;Cheong Taejin;Kim Jinseok;Kim Hagju;Yun Hyesu;Kwak Younghoon
    • The Korean Journal of Petroleum Geology
    • /
    • v.6 no.1_2 s.7
    • /
    • pp.37-43
    • /
    • 1998
  • Chemical components of water, chemical and isotopic compositions of extractable gases were analyzed to characterize the properties of the natural gases which are dissolved in ground water in the Pohang area. Amount of total extracted gases ranges from 27 ml/l to 50.1 ml/l. Hydrocarbon gases are composed of methane ($27{\~}376,420 ppm$) and ethane ($19{\~}127 ppm$). Amount of total hydrocarbon gases is related to the lithology and geological factors around the reservoir. Quantity of hydrocarbon gases tends to increase in the Tertiary reservoirs and in the reservoirs where the Tertiary formations are thick enough. According to the relationship between hydrocarbon gases and total solids in the ground water, it is believed that the hydrocarbon gases were dissolved in the Tertiary formation water. Based on the methane content ($>99.9\%$) and isotopic composition (${\delta}C^{13};-73.1\%_{\circ}{\~}-43.22\%_{\circ}$), we interpret the gases to be of predominantly biogenic origin which were generated by the methanogenic bacterial processes under the low temperature and anoxic conditions.

  • PDF

Numerical Study of Methane-hydrogen Flameless Combustion with Variation of Recirculation Rate and Hydrogen Content using 1D Opposed-flow Diffusion Flame Model of Chemkin (Chemkin 기반의 1차원 대향류 확산 화염 모델을 활용한 재순환율 및 수소 함량에 따른 메탄-수소 무화염 연소 특성 해석 연구)

  • Yu, Jiho;Park, Jinje;Lee, Yongwoon;Hong, Jongsup;Lee, Youngjae
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.238-248
    • /
    • 2022
  • The world is striving to transition to a carbon-neutral society. It is expected that using hydrogen instead of hydrocarbon fuel will contribute to this carbon neutrality. However, there is a need for combustion technology that controls the increased NOx emissions caused by hydrogen co-firing. Flameless combustion is one of the alternative technologies that resolves this problem. In this study, a numerical analysis was performed using the 1D opposed-flow diffusion flame model of Chemkin to analyze the characteristics of flameless combustion and the chemical reaction of methane-hydrogen fuel according to its hydrogen content and flue gas recirculation rate. In methane combustion, as the recirculation rate (Kv) increased, the temperature and heat release rate decreased due to an increase in inert gases. Also, increasing Kv from 2 to 3 achieved flameless combustion in which there was no endothermic region of heat release and the region of maximum heat release rate merged into one. In H2 100% at Kv 3, flameless combustion was achieved in terms of heat release, but it was difficult to determine whether flameless combustion was achieved in terms of flame structure. However, since the NOx formation of hydrogen flameless combustion was predicted to be similar to that of methane flameless combustion, complex considerations of flame structure, heat release, and NOx formation are needed to define hydrogen flameless combustion.