• Title/Summary/Keyword: 메탄산화

Search Result 265, Processing Time 0.032 seconds

Isolation and Characterization of Complement System Activating Polysaccharides from the Hot Water Extract of the Leaves of Capsicum annuum L. (고추잎 열수추출물로부터 보체계 활성화 다당의 분리 및 특성)

  • 이용세;나경수;정상철;서형주;박희성;백형석;최장원
    • Journal of Life Science
    • /
    • v.12 no.1
    • /
    • pp.87-95
    • /
    • 2002
  • It was observed that the hot water extract of the leaves of Capsicum annuum L., a Korean edible plant, had a potent anti-complementary activity. Crude polysaccharide fraction(CAL-0) was obtained by methanol reflux, ethanol precipitation, dialysis and lyophilization. CAL-0 contained 51.8% of total sugar, 8.2% of uronic acid and 16.8% of protein, and consisted of mainly arabinose, galactose and glucose as neutral sugars and galacturonic acid as uronic acid. The anti-complementary activity of CAL-0 decreased greatly by periodate oxidation, but was not changed by pronase treatment. Also, the anti-complementary activity of CAL-0 was reduced partially in the absence of the $Ca^{2+}$ ion. The crude polysaccharide CAL-0 was found to activate the C3 component both in the presence and in the absence of $Ca^{2+}$ through the crossed-immunoelectrophoresis suggesting that those involved in both classical and alternative complement pathway CAL-0 was further separated to an unabsorbed fraction(CAL-1) and six absorbed fractions(CAL-2longrightarrowCAL-7) on DEAE Sepharose CL-6B ion exchange column. Among them four major fractions in activity and yield were obtained, and consisted mainly of arabinose, galactose and glucose with various molar ratios. The major fraction, CAL-2, was purified to give a high molecular fraction(CAL-2-I) and a low molecular fraction(CAL-2-II) on Sepharose CL-6B column. The anti-complementary activity of CAL-2-I, a molecular weight of about 61,000, was higher than it of CAL-2-II.-II.

A Study on the Microstructure Formation of Sn Solder Bumps by Organic Additives and Current Density (유기첨가제 및 전류밀도에 의한 Sn 솔더 범프의 미세조직 형성 연구)

  • Kim, Sang-Hyeok;Kim, Seong-Jin;Shin, Han-Kyun;Heo, Cheol-Ho;Moon, Seongjae;Lee, Hyo-Jong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.47-54
    • /
    • 2021
  • For the bonding of smaller PCB solder bumps of less than 100 microns, an experiment was performed to make up a tin plating solution and find plating conditions in order to produce a bump pattern through tin electroplating, replacing the previous PCB solder bumps process by microballs. After SR patterning, a Cu seed layer was formed, and then, through DFR patterning, a pattern in which Sn can be selectively plated only within the SR pattern was formed on the PCB substrate. The tin plating solution was made based on methanesulfonic acid, and hydroquinone was used as an antioxidant to prevent oxidation of divalent tin ions. Triton X-100 was used as a surfactant, and gelatin was used as a grain refiner. By measuring the electrochemical polarization curve, the characteristics of organic additives in Triton X-100 and gelatin were compared. It was confirmed that the addition of Triton X-100 suppressed hydrogen generation up to -1 V vs. NHE, whereas gelatin inhibited hydrogen generation up to -0.7 V vs. NHE. As the current density increased, there was a general tendency that the grain size became finer, and it was observed that it became finer when gelatin was added.

In vitro Antioxidant Activity of Mentha viridis L. and Mentha piperita L. (박하의 in vitro 항산화활성)

  • Lee, Seung-Eun;Han, Hee-Sun;Jang, In-Bok;Kim, Geum-Soog;Shin, Yu-Su;Son, Yeong-Deck;Park, Chung-Berm;Seong, Nak-Sul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.6
    • /
    • pp.255-260
    • /
    • 2005
  • For selecting a new candidate as functional material, this study was conducted on in vitro antioxidant activity and total phenol content of methanol and water extracts prepared from two Mentha species (M viridis L. (M spicata L.) and Mentha piperita L, Extracts of M. viridis showed more efficient scavenging activity on superoxide and DPPH ${({\alpha},{\alpha}-diphenyl-{\beta}-picrylhydrazyl)}$ radical and inhibitory activity on oxidation of human low density lipoprotein (LDL) induced by $CuSO_4$ and auto-oxidation of linoleic acid than those of M piprita. Methanol extract $(65.88%{\sim}77.59%)$ and water extract $(37.69%{\sim}87.21%)$ of M. viridis also exhibited more potent inhibitory activity on LDL oxidation than that of ${{\alpha}-tocopherol\;(28.37%{\sim}66.54%)}$ at ${1{\sim}100\;{\mu}g/ml}$ of final concentration. The total phenol contents of methanol extract and water extract of Mviridis (17.95% & 10.18%, respectively) as tannic acid equivalent were higher than those of M piperita (15.44% & 9.19%). But the yields of methanol and water extracts of M. viridis (13.3 % & 13.5%) were lower than those of M. piperita (14.1 % & 14.6%). The results implies that the extracts from M. viridis (spicata) is more useful material for industrialization as functional food than those from M. piperita.

LCA on Lettuce Cropping System by Top-down Method in Protected Cultivation (시설상추 생산체계에 대한 top-down 방식 전과정평가)

  • Ryu, Jong-Hee;Kim, Kye-Hoon;So, Kyu-Ho;Lee, Gil-Zae;Kim, Gun-Yeob;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1185-1194
    • /
    • 2011
  • This study was carried out to estimate carbon emission using LCA (Life Cycle Assessment) and to establish LCI (Life Cycle inventory) DB for lettuce production system in protected cultivation. The results of data collection for establishing LCI DB showed that the amount of fertilizer input for 1 kg lettuce production was the highest. The amounts of organic and chemical fertilizer input for 1 kg lettuce production were 7.85E-01 kg and 4.42E-02 kg, respectively. Both inputs of fertilizer and energy accounted for the largest share. The amount of field emission for $CO_2$, $CH_4$ and $N_2O$ for 1 kg lettuce production was 3.23E-02 kg. The result of LCI analysis focused on GHG (Greenhouse gas) showed that the emission value to produce 1 kg of lettuce was 8.65E-01 kg $CO_2$. The emission values of $CH_4$ and $N_2O$ to produce 1 kg of lettuce were 8.59E-03 kg $CH_4$ and 2.90E-04 kg $N_2O$, respectively. Fertilizer production process contributed most to GHG emission. Whereas, the amount of emitted nitrous oxide was the most during lettuce cropping stage due to nitrogen fertilization. When GHG was calculated in $CO_2$-equivalents, the carbon footprint from GHG was 1.14E-+00 kg $CO_2$-eq. $kg^{-1}$. Here, $CO_2$ accounted for 76% of the total GHG emissions from lettuce production system. Methane and nitrous oxide held 16%, 8% of it, respectively. The results of LCIA (Life Cycle Impact assessment) showed that GWP (Global Warming Potential) and POCP (Photochemical Ozon Creation Potential) were 1.14E+00 kg $CO_2$-eq. $kg^{-1}$ and 9.45E-05 kg $C_2H_4$-eq. $kg^{-1}$, respectively. Fertilizer production is the greatest contributor to the environmental impact, followed by energy production and agricultural material production.

Comparative Assessment of Specific Genes of Bacteria and Enzyme over Water Quality Parameters by Quantitative PCR in Uncontrolled Landfill (정량 PCR을 이용한 비위생 매립지의 특정 세균 및 효소 유전자와 수질인자와의 상관관계 평가)

  • Han, Ji-Sun;Sung, Eun-Hae;Park, Hun-Ju;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.895-903
    • /
    • 2007
  • As for the increasing demanding on the development of direct-ecological landfill monitoring methods, it is needed for critically defining the condition of landfills and their influence on the environment, quantifying the amount of enzymes and bacteria mainly concerned with biochemical reaction in the landfills. This study was thus conducted to understand the fates of contaminants in association with groundwater quality parameters. For the study, groundwater was seasonally sampled from four closed unsanitary landfills(i.e. Cheonan(C), Wonju(W), Nonsan(N), Pyeongtaek(P) sites) in which microbial diversity was simultaneously obtained by 16S rDNA methods. Subsequently, a number of primer sets were prepared for quantifying the specific gene of representative bacteria and the gene of encoding enzymes dominantly found in the landfills. The relationship between water quality parameters and gene quantification were compared based on correlation factors. Correlation between DSR(Sulfate reduction bacteria) gene and BOD(Biochemical Oxygen Demand) was greater than 0.8 while NSR(Nitrification bacteria-Nitrospira sp.) gene and nitrate were related more than 0.9. A stabilization indicator(BOD/COD) and MTOT(Methane Oxidation bacteria), MCR(Methyl coenzyme M reductase), Dde(Dechloromonas denitrificans) genes were correlated over 0.8, but ferric iron and Fli(Ferribacterium limineticm) gene were at the lowest of 0.7. For MTOT, it was at the highest related at 100% over BOD/COD. In addition, anaerobic genes(i.e., nirS-Nitrite reductase, MCR. Dde, DSR) and DO were also related more than 0.8, which showing anaerobic reactions generally dependant upon DO. As demonstrated in the study, molecular biological investigation and water quality parameters are highly co-linked, so that quantitative real-time PCR could be cooperatively used for assessing landfill stabilization in association with the conventional monitoring parameters.