• Title/Summary/Keyword: 메타 휴리스틱

Search Result 150, Processing Time 0.028 seconds

GRASP Algorithm for Dynamic Weapon-Target Assignment Problem (동적 무장할당 문제에서의 GRASP 알고리즘 연구)

  • Park, Kuk-Kwon;Kang, Tae Young;Ryoo, Chang-Kyung;Jung, YoungRan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.856-864
    • /
    • 2019
  • The weapon-target assignment (WTA) problem is a matter of effectively allocating weapons to a number of threats. The WTA in a rapidly changing dynamic environment of engagement must take into account both of properties of the threat and the weapon and the effect of the previous decision. We propose a method of applying the Greedy Randomized Adaptive Search Procedure (GRASP) algorithm, a kind of meta-heuristic method, to derive optimal solution for a dynamic WTA problem. Firstly, we define a dynamic WTA problem and formulate a mathematical model for applying the algorithm. For the purpose of the assignment strategy, the objective function is defined and time-varying constraints are considered. The dynamic WTA problem is then solved by applying the GRASP algorithm. The optimal solution characteristics of the formalized dynamic WTA problem are analyzed through the simulation, and the algorithm performance is verified via the Monte-Carlo simulation.

Optimal solution search method by using modified local updating rule in ACS-subpath algorithm (부경로를 이용한 ACS 탐색에서 수정된 지역갱신규칙을 이용한 최적해 탐색 기법)

  • Hong, SeokMi;Lee, Seung-Gwan
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.443-448
    • /
    • 2013
  • Ant Colony System(ACS) is a meta heuristic approach based on biology in order to solve combinatorial optimization problem. It is based on the tracing action of real ants which accumulate pheromone on the passed path and uses as communication medium. In order to search the optimal path, ACS requires to explore various edges. In existing ACS, the local updating rule assigns the same pheromone to visited edge. In this paper, our local updating rule gives the pheromone according to the total frequency of visits of the currently selected node in the previous iteration. I used the ACS algoritm using subpath for search. Our approach can have less local optima than existing ACS and find better solution by taking advantage of more informations during searching.

Ant Colony System for solving the traveling Salesman Problem Considering the Overlapping Edge of Global Best Path (순회 외판원 문제를 풀기 위한 전역 최적 경로의 중복 간선을 고려한 개미 집단 시스템)

  • Lee, Seung-Gwan;Kang, Myung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • Ant Colony System is a new meta heuristics algorithms to solve hard combinatorial optimization problems. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem. In this paper, we propose the searching method to consider the overlapping edge of the global best path of the previous and the current. This method is that we first determine the overlapping edge of the global best path of the previous and the current will be configured likely the optimal path. And, to enhance the pheromone for the overlapping edges increases the probability that the optimal path is configured. Finally, the performance of Best and Average-Best of proposed algorithm outperforms ACS-3-opt, ACS-Subpath and ACS-Iter algorithms.

A Tabu Search Algorithm for Network Design Problem in Wireless Mesh Networks (무선 메쉬 네트워크에서 네트워크 설계 문제를 위한 타부 서치 알고리즘)

  • Jang, Kil-woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.778-785
    • /
    • 2020
  • Wireless mesh networks consist of mesh clients, mesh routers and mesh access points. The mesh router connects wireless network services to the mesh client, and the mesh access point connects to the backbone network using a wired link and provides Internet access to the mesh client. In this paper, a limited number of mesh routers and mesh access points are used to propose optimization algorithms for network design for wireless mesh networks. The optimization algorithm in this paper has been applied with a sub-subscription algorithm, which is one of the meta-heuristic methods, and is designed to minimize the transmission delay for the placement of mesh routers and mesh access points, and produce optimal results within a reasonable time. The proposed algorithm was evaluated in terms of transmission delay and time to perform the algorithm for the placement of mesh routers and mesh access points, and the performance evaluation results showed superior performance compared to the previous meta-heuristic methods.

Tabu search Algorithm for Maximizing Network Lifetime in Wireless Broadcast Ad-hoc Networks (무선 브로드캐스트 애드혹 네트워크에서 네트워크 수명을 최대화하기 위한 타부서치 알고리즘)

  • Jang, Kil-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1196-1204
    • /
    • 2022
  • In this paper, we propose an optimization algorithm that maximizes the network lifetime in wireless ad-hoc networks using the broadcast transmission method. The optimization algorithm proposed in this paper applies tabu search algorithm, a metaheuristic method that improves the local search method using the memory structure. The proposed tabu search algorithm proposes efficient encoding and neighborhood search method to the network lifetime maximization problem. By applying the proposed method to design efficient broadcast routing, we maximize the lifetime of the entire network. The proposed tabu search algorithm was evaluated in terms of the energy consumption of all nodes in the broadcast transmission occurring in the network, the time of the first lost node, and the algorithm execution time. From the performance evaluation results under various conditions, it was confirmed that the proposed tabu search algorithm was superior to the previously proposed metaheuristic algorithm.

The Effect of Multiagent Interaction Strategy on the Performance of Ant Model (개미 모델 성능에서 다중 에이전트 상호작용 전략의 효과)

  • Lee Seung-Gwan
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.3
    • /
    • pp.193-199
    • /
    • 2005
  • One of the important fields for heuristics algorithm is how to balance between Intensificationand Diversification. Ant Colony System(ACS) is a new meta heuristics algorithm to solve hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem(TSP). In this paper, we propose Multi Colony Interaction Ant Model that achieves positive negative interaction through elite strategy divided by intensification strategy and diversification strategy to improve the performance of original ACS. And, we apply multi colony interaction ant model by this proposed elite strategy to TSP and compares with original ACS method for the performance.

  • PDF

Arrival-Departure Capacity Allocation Algorithm for Multi-Airport Systems (다중공항 시스템의 도착-출발 가용량 배정 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.245-251
    • /
    • 2016
  • This paper suggests a heuristic algorithm to obtain optimal solution of minimum number of aircraft delay in multi-airport arrivals/departures problem. This single airport arrivals/departures problem can be solved by mathematical optimization method only. The linear programming or genetic algorithm that is a kind of metaheuristic method is used for a multi-airport arrivals/departures problem. Firstly, the proposed algorithm selects the median minimum delays capacity in various arrivals/departures capacities at an airport for the number of aircraft in $i^{th}$ time interval (15 minutes) at each airport. Next, we suggest reallocate method for arrival aircraft between airports. This algorithm better result of the number of delayed aircraft then genetic algorithm.

Swap-Insert Algorithm for Driver Scheduling Problem (운전기사 일정계획 문제의 교환-삽입 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.175-181
    • /
    • 2014
  • This paper suggests O(m) polynomial time heuristic algorithm to obtain the solution for the driver scheduling problem, DSP, that has been classified as NP-complete problem. The proposed algorithm gets the initial assignment of n minimum number of drivers from given m schedules. Nextly, this algorithm gets the minimum total time (TC) using 5 rules of swap and insert for decrease of over times (OT) and idle times (IT). Although this algorithm is a heuristic polynomial time algorithm with O(m) time complexity rules to be find a optimal (or approximate) solution, this algorithm is equal to metaheuristic methods for the 5 experimental data. To conclude, this paper shows the DSP is not NP-complete problem but Polynomial time (P)-problem with polynomial time rules.

Delphi Research on Usability Test Framework of Metaverse Platform - Case of Roblox, Zepeto, and Gathertown (메타버스 플랫폼 사용성 평가체계 구축에 관한 델파이연구 - 로블록스, 제페토, 게더타운 사례를 중심으로)

  • Lee, Han Jin;Gu, Hyun Hee
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.9
    • /
    • pp.179-193
    • /
    • 2022
  • Amid the explosive growth of various metaverse platforms, there is no unified indicator to measure, analyze, and evaluate based on customer experience. Therefore, the usability evaluation factors in metaverse were identified through a heuristic methodology and literature review, to evaluate the metaverse, a two-to three-dimensional virtual world platform. A measurable system was established by subdividing 20 items in 5 fields, including user control, information structure, design and content, and usage environment, derived through Delphi technique. Based on this, after experiencing the actual contents of major metaverse platforms such as Roblox and Zepeto, usability was evaluated and comparative verification was conducted. As a result, it was estimated that metaverse user experience could be improved as its utility was derived relatively high in terms of user control and content. This study constitutes a theoretical contribution by extending the usability evaluation system, which has been widely used in the field of service design, to the fields of extended reality and mixed reality. At the same time, it has practical key findings of providing basic judgment standards to stakeholders in the metaverse field, as well as policy implications for digital capability enhancement and industry revitalization.

Optimization Algorithm for k-opt Swap of Generalized Assignment Problem (일반화된 배정 문제의 k-opt 교환 최적화 알고리즘)

  • Sang-Un Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.151-158
    • /
    • 2023
  • The researchers entirely focused on meta-heuristic method for generalized assignment problem(GAP) that is known as NP-hard problem because of the optimal solution within polynomial time algorithm is unknown yet. On the other hand, this paper proposes a heuristic greedy algorithm with rules for finding solutions. Firstly, this paper reduces the weight matrix of original data to wij ≤ bi/l in order to n jobs(items) pack m machines(bins) with l = n/m. The maximum profit of each job was assigned to the machine for the reduced data. Secondly, the allocation was adjusted so that the sum of the weights assigned to each machine did not exceed the machine capacity. Finally, the k-opt swap optimization was performed to maximize the profit. The proposed algorithm is applied to 50 benchmarking data, and the best known solution for about 1/3 data is to solve the problem. The remaining 2/3 data showed comparable results to metaheuristic techniques. Therefore, the proposed algorithm shows the possibility that rules for finding solutions in polynomial time exist for GAP. Experiments demonstrate that it can be a P-problem from an NP-hard.