• Title/Summary/Keyword: 메타카올린

Search Result 79, Processing Time 0.038 seconds

Effect of Meta Kaolin addition to Activation of waste concrete sludge

  • 황규홍;김재준;연상흠
    • Cement Symposium
    • /
    • no.32
    • /
    • pp.217-221
    • /
    • 2005
  • The utilization of calcined clay, in the form of meta kaolin, as a pozzolanic for mortar and concrete has received considerable attention in recent years. so, the influence of waste concrete sludge and meta kaolin on cement concrete strength has been stud

  • PDF

The Statistical Hypothesis Verification to Influence of Addition of Metakaolin and Silica Fume on Compressive Strength and Chloride Ion Penetration of High Strength Concrete (메타카올린 및 실리카퓸의 혼입이 고강도 콘크리트의 압축강도와 염소이온 투과에 미치는 영향에 관한 통계적 가설검증)

  • Min, Jeong Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.215-225
    • /
    • 2011
  • Metakaolin is a dehydroxylated form of the clay mineral kaolinite. Rocks that are rich in kaolinite are known as china clay or kaolin, traditionally used in the manufacture of porcelain. The particle size of metakaolin is smaller than cement particles, but not as fine as silica fume. This paper investigates the effect of the concrete containing metakaolin as a mineral admixture on the compressive strength and resistance properties to chloride ion penetration. In this study, the experiment was carried out to investigate and analyze the influence of replacement ratio of metakaolin and micro silica fume on the compressive strength and chlorine ion penetration resistance of concrete. All levels were water/binder ratio 30%, replacement ratio of metakaolin and silica fume were 0, 5, 10, 15, 20% respectively. The compressive strength of concrete using metakaolin tends to increase, as the replacement ratio increases but the chlorine ion penetration resistance was not so as lager as silica fume concrete. Therefore, the optimum mixing ratio of metakaoline to satisfy a properties of compressive strength and chlorine ion penetration resistance was was approximately10%.

Rheological Properties of Cement Pastes Containing Metakaoline (메타카올린을 혼합한 시멘트 페이스트의 유동특성)

  • 송종택;최해영
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1229-1234
    • /
    • 2003
  • The utilization of metakaoline as a mineral admixture for cement has received considerable attention in recent years. This paper investigates the rheological properties of cement pastes containing metakaoline in view of fluidity. The rheology of the paste is assessed by using a BROOKFIELD RVDV II + viscometer (SC4-21, 29) having cylindrical spindle. The results show the fluidity of cement pastes with metakaoline is increased by increasing W/S ratio and the dosage of superplastcizer. And also cement pastes with metakaoline as a partial replacement of cement show a dilatant behavior. Dilatancy is heavily influenced by W/S ratio and by the amount of metakaoline. However the thixotropy of the pastes is increased by silica fume.

The Chloride Ion Diffusion Characteristics of High Performance Lightweight Concrete Using Metakaolin (메타카올린을 사용한 고성능 경량 콘크리트의 염소이온 확산 특성)

  • Lee, Changsoo;Kim, Youngook;Nam, Changsik
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.1
    • /
    • pp.21-31
    • /
    • 2011
  • The objectives of this study is replaced Silicafume with Metakaolin that is used to lightweight concrete to better performance. So, this study made high-performance lightweight concrete using Metakaolin and characteristics of the fundamental properties and chloride ion diffusion. Consequently, it is compressive strength and chloride ion penetration resistance is lower than lightweight concrete using Silicafume, the performance of compressive strength contrast Silicafume is about 88 to 95%. Also, this study got a content result because the chloride ion penetration resistance showed the performance in around 80 to 90%. As a result, this study insist that replacement ratio of Metakaolin is suitable for 10 to 15%.Silicafume and Metakaolin have similar characteristics. In addition, it is similar to the performance of alternative materials is possible.

Estimation on the Durability of High-Strength Concrete using Metakaolin (Metakaolin 혼합 고강도 콘크리트의 내구특성 예측)

  • Lee, Sang-Ho;Moon, Han-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.173-180
    • /
    • 2005
  • Metakaolin is a cementitious material for producing high-strength concrete. This material is now used as substitute for silica-fume. In this paper, we did the mechanical and durability test such as compressive/tensile/flexural strength test, chloride ion diffusion, chemical attack and repeated freezing and thawing, carbonation test. In the mechanical tests, 10~15% for binder is optimum substitute rate. And, in the chloride ion diffusion test, according to the increase of substitute of metakaolin & silica-fume for binder, the diffusion coefficient was more reduced. In the chemical attack test, by the filler effect of fine powder such metakaolin and silica-fume, the resistance is more excellent than normal concrete. In the other durability test, the concrete using metakaolin also compared with those of silica-fume substitute concrete. Through these tests, we recognized that metakaolin can be used as a substitute for silica-fume.

A Study on Strength and Chloride Resistance of Concrete Using the Metakaolin (메타카올린 사용에 따른 콘크리트의 강도 및 염화물 저항성)

  • Kim, Myung-Yu;Yang, Eun-Ik;Yang, Joo-Kyoung;Park, Hae-Guun;Chun, Sang-Eun;Lee, Myeong-Sub
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.521-524
    • /
    • 2008
  • The requirement for durability of concrete is increasing recently as a high-rise concrete structure is built. For this reason, the concern about high performance concrete is being high. Recently, metakaoline to be profitable in economical aspect as well as to have strength and durability of level similar to silica fume is evaluated highly as new admixture. In this study, the workability, the strength, the chloride resistance and the air-void structure more than 50${\mu}m$ are evaluated by comparing both metakaolin and silica fume. According to the results, when the metakaoline is compared with silica fume in properties of fresh concrete, it seems to the similar level of properties. Metakaoline concrete showed the highest value in the strength property. And, it is showed that replacement of the metakaoline more than 10% is superior than both silica fume and OPC in long and short-term chloride resistance. In conclusion, replacement of the metakaoline more than 10% is the most excellent performance in terms of strength and chloride resistance

  • PDF

A Study on the Pore Structure and Compressive Strength of Concrete using Metakaolin (메타카올린을 사용한 콘크리트의 공극구조와 압축강도에 관한 연구)

  • Yeo, Dong Ku;Kim, Nam Wook;Song, Jun Ho;Bae, Ju Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.927-934
    • /
    • 2006
  • According to the high demand of concrete structures with high performance, various studies have examined on the high performance concrete, especially high strength concrete. Various admixtures are required to produce high strength concrete and silica fume has been the most popular admixture. Recently, however, metakaolin, which is similar to silica fume in properties but cheaper, has been introduced to high strength concrete. This study conducted XRD and SEM analyses on a cement paste specimens to clarify metakaolin's performance in pozzolan. Additionally, a concrete specimens were fabricated to analyze its pore structure using Mercury Intrusion Porosimetry and its correlation to the compressive strength. In result, it was found that the average diameter of pore reduced and compressive strength increased as more metakaolin content was added. In addition, a regression analysis of $10nm{\sim}10{\mu}m$ pore and compression strength revealed that these two factors had a high correlation of about 0.93 and 10~15% of metakaolin replacement was most appropriate.

Mechanical Properties and Resistance to Freezing and Thawing of the Recycled Aggregate Concrete with Metakaolin (메타카올린을 혼합한 재생골재 콘크리트의 역학적 특성 및 동결융해 저항성)

  • Moon, Han-Young;Kim, Yang-Bae;Moon, Dae-Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.270-278
    • /
    • 2005
  • Recycled aggregate concrete has lower strength and durability compared to concrete with natural aggregate. Therefore, metakaolin is used to improve the properties of recycled aggregate concrete. Main components of metakaolin are $SiO_2$ and $Al_2O_3$. and specific surface area is 9 times larger than that of ordinary portland cement. Quality of demolished-recycled aggregate(DRA) satisfies the type 1 of KS F 2573, but quality of source-recycled aggregate(SRA) does not satisfy with the type 2 of KS F 2573. When metakaolin was replaced with 20% of cement, compressive strength of concrete with SRA and DRA develops about 40~64% of control concrete. Water absorption ratio was reduced about 2% by replacing 20% metakaolin and it represents low compared to the natural aggregate concrete without metakaolin. In addition, the resistance to freezing and thawing, of concrete with DRA is indicated to remarkably enhanced due to the contribution of metakaolin. However, when metakaolin is replaced with 20% of cement, relative dynamic modulus of elasticity of concrete with SRA was below 60% at 210 freezing and thawing cycles.

Estimation on the Durability of Metakaolin Concrete According to the W/B Ratio (물결합재비를 달리하여 제작한 메타카올린 혼입 콘크리트의 내구성능 평가)

  • Kim, Chun-Ho;Kim, Nam-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.84-91
    • /
    • 2014
  • In this study, in order to find the improvement effect of metakaolin for using improvement of strength in concrete structures, it is investigated the diffusion coefficient of chloride ions and adiabatic temperature rise test. As a result, due to the mixing of metakaolin, it has been confirmed reducing diffusion coefficient of chloride ions and could prevent down of slump for use of adding fly ash. Therefore, ensuring resistance to chloride ion penetration into concrete, it is possible to enlarge the W/B ratio and reduce the adiabatic temperature rise by mixing of metakaolin. So, it is confirmed that the durability of concrete structures is increased.

Effect of Metakaolin on the Strength Properties of Lightweight Aggregate Cellular Concrete (경량골재기포콘크리트에서의 메타카올린 강도 증가 효과)

  • Hwang, Eun-A;Lee, Haeng-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.489-490
    • /
    • 2009
  • In this study, the experiment was carried out to investigate the effect of metakaolin on the compressive strength of lightweight aggregate cellular concrete. For this purpose, five level replacement ratio of metakaolin were selected.

  • PDF