• Title/Summary/Keyword: 먼지 오염

Search Result 460, Processing Time 0.027 seconds

Photocatalytic disinfection of indoor suspended microorganisms (Escherichia coli and Bacillus subtilis spore) with ultraviolet light (광촉매와 UVA에 의한 실내 부유 미생물(E. coli 및 Bacillus. subtilis sp.) 살균 제거 연구)

  • Yoon, Young H.;Nam, Sook-Hyun;Joo, Jin-Chul;Ahn, Ho-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1204-1210
    • /
    • 2014
  • New control methods are proposed for indoor air quality by removing fine airborne dust-particles. As suspended fine dust-particles contain inorganic dust as well as fine organic bacteria, studies for simultaneous control of these contaminants are required. In this study, photocatalytic disinfection of indoor suspended microorganisms such as E. coli and Bacillus subtilis is performed by three types of photocatalysts with UVA irradiation. The UVA irradiation strength was controlled to the minimum $3{\mu}W/cm^2$, and ZnO, $TiO_2$, and ZnO/Laponite ball were used as the catalysts. The results indicate that E. coli was removed over 80 % after about 2 hours of reaction with UVA and all three types of photocatalysts, whereas only with UVA, around 50 % E. coli removal was obtained. Among the catalysts, ZnO/Laponite composite ball was found to have similar sterilizing capacity to $TiO_2$. However, in case of B. subtilis, which has thick cell wall in its spore state, disinfection was not effective under the low UVA irradiation condition, even with the catalysts. Further studies need to figure out the optimal UVA irradiation ranges as well as photocatalysts doses to control airborne dust, to provide healthy clean air environment.

Investigation of correlation between ambient particulate matter and rainwater quality during heavy rain (호우 시 대기 중 미세먼지와 빗물 수질 간 상관성 분석 연구)

  • Hyemin Park;Taeyong Kim;Minjune Yang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.151-151
    • /
    • 2023
  • 본 연구는 호우(heavy rain) 발생 시 대기 중 미세먼지(particulate matter, PM) 저감효과를 규명하고 강우 지속에 따른 빗물 수질(pH, 전기전도도(electrical conductivity, EC), 수용성 이온) 분석을 통해 대기 중 PM이 빗물 수질에 미치는 영향을 평가하였다. 2020년 3월부터 2021년 2월까지강우 강도(7.5 mm/h)를 기준으로 총 6회의 강우를 대상으로 하였으며 빗물 샘플은 집수장치를 통해 50 mL를 연속적으로 수집하여 수질을 분석하였다. 대기 중 PM2.5 (≤ 2.5 ㎛ in diameter) 및 PM10 (≤ 10 ㎛ in diameter) 농도는 기상청 내 부산 남구 대연동 관측소의 automatic weather system (AWS)에서 측정된 일평균 자료를 이용하였다. 강우에 따른 대기 중 PM의 저감효율은 상대적으로 PM10에서 뚜렷하게 나타났으며, 특히 강우 강도 7.5 mm/h 이상(유형 1)의 호우 발생 시60% 이상의 저감효율을 보였다. 반면, 강우 강도 7.5 mm/h 이하(유형 2)일 때는 10% 이하의 저감효율을 보였으며, 강우 지속에 따라 대기 중 PM10 농도가 증가하는 경향을 보이기도 하였다. 총108개의 빗물 샘플 수질을 분석한 결과, 유형 1의 경우 초기 빗물의 평균 EC는 58.5 µS/cm으로 상대적으로 높았으며 대기 중 PM10과 양의 상관관계(r = 0.99)를 보였고 평균 pH는 4.3으로 산성도가 높게 나타났으며 대기 중 PM10과 음의 상관관계(r = -0.99)를 보였다. 반면, 유형 2의 경우 대기 중 PM10과 EC (r = -0.56) 및 pH (r = -0.41) 간 뚜렷한 상관관계가 나타나지 않았다. 또한 강우가 지속됨에 따라 EC와 수용성 양이온(Na+, Mg2+, K+, Ca2+, NH4+) 및 음이온(Cl-, NO3-, SO42-)의 농도는 지속적으로 감소하는 경향을 보였으나 pH의 경우 강우 강도에 따라 증감의 경향이 다르게 나타났다. 유형 1의 경우 강우 지속에 따라 pH가 증가하여 산성도가 낮아졌으나 유형 2는 pH의 증감 형태를 뚜렷하게 확인하기 어려웠다. 연구 결과를 통해 강우 초기 높은 강도로 강우가 지속될 경우 대기 중 PM10이 빗물 수질에 영향을 미칠 수 있는 것으로 판단되며, 이에 따라 호우 발생 시 강우가 대기 중 오염물질을 지표면으로 유입시킬 수 있는 매개체로 작용할 수 있음을 지시한다.

  • PDF

Evaluation of skin improvement efficacy of herbal medicine extracts on skin keratinocytes stimulated with fine dust PM10 (미세먼지 PM10으로 손상을 유도한 피부각질형성세포에서 한약재 추출물의 피부 개선 효능 평가)

  • Dong-Hee Kim;Yun Hwan Kang;Bo-Ae Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.856-867
    • /
    • 2023
  • Due to the increase in fine dust caused by environmental pollution, oxidative damage and aging of the skin are accelerated. In this study, the antioxidant, hyaluronic acid, filaggrin, MMP-1, and ROS level of selected herbal extracts were evaluated to confirm the protective efficacy of keratinocytes treated PM10. As a result, the antioxidant capacity of 1,1-diphenyl-2-picrylhydrazyl(DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid(ABTS), and FRAP assay increased in a concentration-dependent manner. Keratinocytes the group treated with 300 ㎍/ml of PM10, hyaluronic acid and filaggrin decreased by more than 50%, and increased in the group treated with extracts of Alpinia officinarum, Ulmus macrocarpa, and Ulmus macrocarpa but decreased when the extract was treated, which is evaluated as inhibiting the degradation of collagen and elastin. In addition, in the case of ROS measurement using zebrafish embryos, it was confirmed that the extract was reduced when the extract was treated 25 ㎍/ml, the intensity of fluorescence similar to the negative control was shown, confirming that the production of ROS was significantly reduced. Through this study, the selected oriental medicinal materials, Alpinia officinarum, Ulmus macrocarpa, and Ulmus macrocarpa, protect the skin from fine dust. It is thought that it can be used as an anti-aging product for skin improvement as a material that can be improved or improved.

A Study on the Classification of Vulnerable Areas to PM2.5 according to Urban Characteristics based on Vulnerability Assessment (취약성 평가에 기반한 PM2.5 취약지역 유형화에 관한 연구)

  • Hansol Mun;Juchul Jung
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.5
    • /
    • pp.187-203
    • /
    • 2024
  • PM2.5, a type of fine particulate matter, poses serious health risks. Existing pollution management policies and research have generally focused on high-concentration areas. However, this approach has limitations as it does not adequately account for regional characteristics and varying levels of vulnerability, leading to an incomplete reflection of actual risks in specific areas. This study analyzed 229 administrative districts to develop a vulnerability index by comprehensively evaluating PM2.5 exposure, sensitivity, and adaptive capacity. Using data from 2019, the index was calculated through normalization and entropy weighting methods, and spatial patterns of PM2.5 vulnerability were examined through LISA and K-means clustering analysis. The findings reveal that the distribution of PM2.5-vulnerable areas shows distinct patterns within urban settings, which were classified into four distinct types, each characterized by different urban features. This suggests a need for region-specific dust reduction policies. This study contributes to a better understanding of the spatial patterns of PM2.5 vulnerability and aims to support the development of more effective policy approaches.

Characterization of Concentrations of Fine Particulate Matter in the Atmosphere of Pohang Area (포항지역 대기 중 초미세먼지(PM$_{2.5}$)의 오염특성평가)

  • Baek, Sung-Ok;Heo, Yoon-Kyeung;Park, Young-Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.302-313
    • /
    • 2008
  • The purposes of this study are to investigate the concentration levels of fine particles, so called PM$_{2.5}$, to identify the affecting sources, and to estimate quantitatively the source contributions of PM$_{2.5}$. Ambient air sampling was seasonally carried out at two sites in Pohang(a residential and an industrial area) during the period of March to December 2003. PM$_{2.5}$ samples were collected by high volume air samplers with a PM$_{10}$ Inlet and an impactor for particle size segregation, and then determined by gravimetric method. The chemical species associated with PM$_{2.5}$ were analyzed by inductively coupled plasma spectrophotometery(ICP) and ion chromatography(IC). The results showed that the most significant season for PM$_{2.5}$ mass concentrations appeared to be spring, followed by winter, fall, and summer. The annual mean concentrations of PM$_{2.5}$ were 36.6 $\mu$g/m$^3$ in the industrial and 30.6 $\mu$g/m$^3$ in the residential area, respectively. The major components associated with PM$_{2.5}$ were the secondary aerosols such as nitrates and sulfates, which were respectively 4.2 and 8.6 $\mu$g/m$^3$ in the industrial area and 3.7 and 6.9 $\mu$g/m$^3$ in the residential area. The concentrations of chemical component in relation to natural emission sources such as Al, Ca, Mg, K were generally higher at both sampling sites than other sources. However, the concentrations of Fe, Mn, Cr in the industrial area were higher than those in the residential area. Based on the principal component analysis and stepwise multiple linear regression analysis for both areas, it was found that soil/road dust and secondary aerosols are the most significant factors affecting the variations of PM$_{2.5}$ in the ambient air of Pohang. The source apportionments of PM$_{2.5}$ were conducted by chemical mass balance(CMB) modeling. The contributions of PM$_{2.5}$ emission sources were estimated using the CMB8.0 receptor model, resulting that soil/road dust was the major contributor to PM$_{2.5}$, followed by secondary aerosols, vehicle emissions, marine aerosols, metallurgy industry. Finally, the application and its limitations of chemical mass balance modeling for PM$_{2.5}$ was discussed.

Analysis on Impacts of Renewable Energy Promotion on Mitigation of Air Pollution (신재생에너지의 확산이 대기오염 배출 저감에 미치는 영향 분석)

  • Bae, Jeong Hwan;Jung, Seo Rim
    • New & Renewable Energy
    • /
    • v.16 no.3
    • /
    • pp.13-26
    • /
    • 2020
  • This study analyzed whether the diffusion of new and renewable energy contributed to mitigating emissions of various air pollutants, including particulate matter, using panel econometric models. The theoretical foundation of such econometric models is based on the Environmental Kuznets Curve (EKC) hypothesis, which assumes an inverted U-shaped relation between national income and environmental pollution, as originally proposed by Grossman and Krueger. We examined whether there are inverted U-, U-shaped, or N-shaped relations between national income and air pollution. We demonstrate that increases in new and renewable energy significantly mitigated emissions of CO, NOX, and PM2.5. Additionally, we included NOX, SOX, PM10, and VOCs as secondary emission sources of PM2.5 and found that emission of PM10 resulted in the highest PM2.5 emissions, followed by NOX and SOX emissions. The impact of new and renewable energy on air pollution varied across regions. Increase of new and renewable energy in the Honam region significantly mitigated CO, NOX, and TSP emissions, while that in the Youngnam and metropolitan areas did not significantly mitigate air pollution overall. There was a U-shaped relationship between air pollution and national income for CO, NOX, PM2.5, and SOX, while an inverted N-shape was observed for PM10.

A Study on Atmospheric Dispersion Pattern of Ship Emissions - Focusing on Port of Busan (선박 배기가스의 대기확산 패턴에 관한 연구 - 부산항을 중심으로)

  • Lee, Min-Woo;Lee, Hyang-Sook
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.1
    • /
    • pp.35-49
    • /
    • 2018
  • Busan Port handles more than 75% of the domestic freight volume and is ranked at 6th for global shipping in the world. This paper aims to estimate ship emission in North Port that is the center of Busan Port and located near the residential area. The emission for each type of ship is calculated applying a emission model proposed by U.S. EPA and the atmospheric diffusion pattern of the exhaust gas according to the season, the weather condition and the time was identified using CALPUFF Model. As a result, the major pollutants of $NO_x$, $SO_x$ and PM10 were 30,853 tons, 36,281 tons and 6,856 tons, respectively, and the highest rate was 42% in oil tankers. On clear days, air pollution was stagnant around the harbor, spread widely on windy days, and tended to be thinner on rainy days. The research contributes to recognizing the seriousness of air pollution and can be used as basic data for policy making in the future.

Emission Evaluation of Emulsion Fuel Prepared from Bunker C Oil (벙커 C유를 사용한 에멀젼 연료유의 배기가스 특성)

  • Lim, HeungKyoon;Lee, MyungJin;Chi, Gyeong-Yup;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.186-192
    • /
    • 2017
  • In this study, water in oil (W/O) emulsion fuel was prepared with surfactant mixture of OIMS90 and NP12 by varying ratio of water to bunker-C oil, surfactant concentration and composition, emulsification time, stirring intensity, temperature and mixing time. Diesel engine performance and exhaust emissions were measured and analyzed with prepared emulsified fuel and compared with those measured using bunker Coil. The results indicated that bunker C emulsion fuel stabilized by surfactant mixture of OIMS90 and NP12 is efficient in reducing emissions of particulate matter, $NO_2$, CO, $CO_2$ and $SO_2$. The biggest reduction in exhaust emission was achieved by using emulsion fuel prepared by OIMS90/NP12 = 4 : 6, 500 ppm of total surfactant concentration and 10% water content at $80^{\circ}C$. Boiler efficiency test measured with emulsion fuel showed excellent energy efficiency compared with bunker C oil.

A preliminary spectral library development for detection and classification of toxic chemicals using hyperspectral technique (초분광 기법을 활용한 유해화학물질 감지 및 분류를 위한 분광라이브러리 구축)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun;Kim, Seojun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.131-131
    • /
    • 2019
  • 최근 기후변화와 여름철 고온 등으로 인한 녹조현상, 각종 사고로 인한 화학물질 및 유류 유출 등 수질오염과 관련된 사회적 관심이 높아지고 있다. 특히, 화학사고로 인한 유해화학물질 유출은 접촉시 인체에 악영향을 끼치며, 대기 수질 토양을 오염시키고 주변 농작물의 변색이나 괴사를 유발하는 등 발생 시 적절한 조치와 대응이 필요하다. 환경부에서는 유해화학물질 유출사고로 인한 국민건강 및 환경상의 위해를 예방하기 위해 화학물질관리법과 화학물질 등록 및 평가에 관한 법률을 제정하여 유해화학물질을 관리하고 사고에 대응하고 있다. 그러나, 화학사고 발생 시 현장인력에 의존해 공장 인근의 먼지, 악취 등을 감시하거나 화학물질의 유출이 우려되는 곳에 제한적으로 검출센서를 설치해 사고를 감시하고 있으나 미설치 지역에 대한 능동적 탐지가 어렵고, 공간적 분포 탐지가 불가능하여 초동 대응에 한계가 있다. 한편 최근 초분광 영상을 활용하여 물질 고유의 특성을 분석함으로써 토지피복, 식생, 수질 등의 식별에 활용되고 있어 화학물질 감지 가능성도 보여주고 있다. 하지만, 초분광 센서를 활용한 하천의 화학물질 감지를 위한 연구는 아직 미비한 실정이다. 이에 본 연구에서는 우선 유해화학물질의 일종인 황산, 염화티오닐, 톨루엔을 대상으로 지점 분광복사계로 촬영하여 각각의 화학물질이 갖는 분광특성을 수집하여 초분광 영상으로 상호 구분이 가능한 지 확인하고자 하였다. 이상치 검출 및 신뢰도 높은 자료를 구축하기 위해 다회 반복촬영하였으며 반사도의 표준화를 위해 백색판을 동시에 측정하고 이를 정규화하여 분광 라이브러리를 구축한 결과, 대상 화학물질 별 식별이 가능하다는 결과를 도출하였다. 이러한 가능성에 기반하여 추가적인 유해화학물질 분광 라이브러리 데이터베이스를 구축하면, 사고물질의 식별 및 농도를 즉각적으로 확인하고 실시간 모니터링에 적용하여 신속하게 화학사고 발생여부 감지 및 대응에 활용될 것으로 기대한다.

  • PDF

Effect of addition of a catalystic layer on Denitrification System efficiency in a 500 MW Coal-fired Power Plant (500 MW 석탄화력발전소 촉매단추가에 따른 탈질설비 효율에 미치는 영향)

  • Lee, Sang Soo;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.17 no.1
    • /
    • pp.58-66
    • /
    • 2021
  • The government has recently come up with a policy to tighten regulations on air pollutant emissions due to public concerns over the emission of pollutants such as fine dust. The coal-fired power plant is speeding up the improvement of the performance of environmental facilities, and this paper deals with the cases of performance improvement by adding a catalyst to the 500 MW standard coal-fired power DeNox system, and examines the change in the performance factors according to the addition of catalysts and the efficiency of NOx removal. The DeNOx efficiency before and after improvement increased from 80% to 88%, and the conversion rate of SO2/SO3, ammonia slip which are performance factors satisfied the design assurance value, but exceeded the design assurance value for differential pressure. At the same time, the ammonia slip concentration and differential pressure items increased as the NOx removal efficiency increased, resulting in the need for management and improvement.