• Title/Summary/Keyword: 먹는물수질기준

Search Result 55, Processing Time 0.025 seconds

Application of Daphnia magna Monitoring System for Real-time Ecotoxicity Assessment (실시간 생태독성 평가를 위한 물벼룩 감시장치 적용성 검토)

  • Lee, Jang-Hoon;Ko, Woong-Tae
    • Journal of Digital Convergence
    • /
    • v.17 no.10
    • /
    • pp.1-12
    • /
    • 2019
  • In this study, TI(Toxic Index) of Daphnia toximeter corresponded to ecological toxicity standard 1 TU(Toxic Unit) was set up using Daphnia toximeter and when operating NOEC(water quality standards for drinking water) and $EC_{50}$ Daphnia toximeter alarm was issued appropriately, which enables real time ecological toxicity evaluation. I studied to get a good shot and the research was conducted by investigating domestic and international related data and conducting a preliminary study. 6 of 59 hazardous substances (As, Hg, Cr, Diazinon, Dioxane, and Phenol) recommended by the water quality monitoring items for artificial river water were selected and static, dynamic and quality management test, TI was shown to be good in other materials except Diazinon, and as a result of $EC_{50}$ spiking test, TI was matched to TU by distinguishing between 1 TU and 1 TU. in suggesting the complementary point of ecological toxicity management system and the future of research on water Daphnia toximeter.

Distribution and Characteristics of Coliform Bacteria in Groundwater of Yeungnam Province (영남지역 지하수에서 대장균군의 분포 및 분리한 세균의 특성)

  • Lee In-Hwan;Kim Soo-Kyung;Choi Yun-Hee;Kim Jong-Seol
    • Korean Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.95-102
    • /
    • 2006
  • To evaluate bacteriological water quality of groundwater in Yeungnam Province, samples were taken from 123 locations during summer and 117 locations during winter. The medians of heterotrophic plate counts.(HPCs) were 30 CFU/mL for the summer samples and 40 CFU/ml for the winter, and more than 25% showed HPCs higher than 100 CFU/ml. Coliform bacteria were detected from 46% of the summer samples and 30% of the winter. In these coliform-positive samples, the medians of coliform counts were 20 CFU/ml for the summer samples and 4 CFU/ml for the winter. Genera such as Citrobacter, Enterobacter, Escherichia, Klebsielia, Pantoea, Rahnellia, and Serratia were identified from the coliform isolates; among them, 48% were members of the genus Enterobacter. While E. cloacae, E. amnigenus, and K. pneumoniae were the most frequently isolated species, E. coli was isolated only from 1 location. The coliform counts were positively correlated with the HPCs, which also positively correlated with water temperature. The results of present study provide further insight on the extent of groundwater contamination with coliform bacteria.

Monitoring and risk assessment of 1,4-Dioxane in Nakdong river (낙동강 수계 중 1,4-dioxane의 모니터링 및 위해성 평가)

  • Lee, Ji-Young;Kim, Joung-Hwa;Kim, Hyun-Koo;Choi, Jong-Ho;Kim, Seungki;Pyo, Heesoo
    • Analytical Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.383-391
    • /
    • 2008
  • International Agency for Research on Cancer (IARC) has classified it as a possible carcinogen and World Health Organization (WHO) has suggested 50 ng/mL as a guideline value for 1,4-dioxane. Considering the toxicity of 1,4-dioxane and ingestion rate of drinking water, the monitoring of 1,4-dioxane in drinking water in Nakdong river is very important. We analyzed 1,4-dioxane four times per year for the 12 samples of treated water and 4 samples of raw water in Nakdong river in Korea from 2000 to 2007 and surveyed the trend of concentrations of 1,4-dioxane. As a results of analysis, 1,4-dioxane was detected from 0.24 to 240.2 ng/mL in treated water and from 0.39 to 81.9 ng/mL in raw water from 2000 to 2007. The average concentrations are 22.68 ng/mL and 19.15 ng/mL in treated water and raw water, respectively. The detected concentrations was decreased but frequency of detection was not changed since establishment of regulation in 2004. Results of comparison of 95 percentile excessive cancer risk of 1,4-dioxane in treated and raw water were each $6.63{\times}10^{-6}$, $3.17{\times}10^{-6}$ before 2004 and $2.10{\times}10^{-6}$, $1.22{\times}10^{-6}$ after 2004. Also, comparing the detected concentration and frequency for each season, these were more detected the concentration and frequency for 1,4-dioxane in treated and raw water from winter to spring.

In Situ Iron-manganese Removal by an Oxygenated Water Injection-and-extraction Technique in a Riverbank Filtration System (산소수 주입-양수 기법을 통한 강변여과수 내 철/망간 저감 평가)

  • Yi, Myeong-Jae;Cha, Jang-Hwan;Jang, Ho-June;Ahn, Hyun-suk;Hahn, Chan;Kim, Yongsung
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.339-347
    • /
    • 2015
  • Riverbank filtration has been suggested as a cost-effective method for improving water quality. However, high concentrations of Fe2+ and Mn2+ cause problems for the use of water and the maintenance of facilities. We evaluated the effectiveness and efficiency of an Fe2+ and Mn2+ removal technique based on the in situ injection of highly oxygenated water at a site on the Anseong River, between Anseong City and Pyeongtaek City, Gyeonggi Province. The removal process consists of three steps: injection, resting, and extraction. Results show that the removal efficiency increases with repeated application of the process. The amount of Fe-reduced drinking water satisfying water regulations (limit, 0.3 mg/L Fe) obtained using oxygenated water injection was five times higher than the amount of injected oxygenated water. Levels of Mn2+ were also reduced following the injection of oxygenated water.

Chemical Characteristics of Shallow Groundwater in an Agricultural District of Hyogyo-ri Area, Chungnam Province (충남 효교리 농업지역 천부지하수의 화학적 특성)

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Choi, Eun-Gyeong;Kim, HyunKoo;Kim, MoonSu;Park, Ki-Hoon;Lim, Woo-Ri
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.630-646
    • /
    • 2020
  • In rural areas, nitrate-nitrogen (NO3-N) pollution caused by agricultural activities is a major obstacle to the use of shallow groundwater as domestic water or drinking water. In this study, the water quality characteristics of shallow groundwater in Hyogyo-ri agricultural area of Yesan-gun, Chungcheongnam-do province was studied in connection with land use and chemical composition of soil layer. The average NO3-N concentration in groundwater exceeds the domestic and agricultural standard water qualities of Korea and is caused by anthropogenic sources such as fertilizer, livestock wastewater, and domestic sewage. The groundwater type mainly belongs to Ca(Na)-Cl type, unlike Ca-HCO3 type, a general type of shallow groundwater. The average NO3-N concentration (7.7 mg L-1) in groundwater in rice paddy/other (upstream, ranch, and residential) area is lower than the average concentration (22.8 mg L-1) in farm field area, due to a lower permeability in paddy area than that in farm field area. According to the trend analysis by the Mann-Kendall and Sen tests, the NO3-N concentration in the shallow groundwater shows a very weak decreasing trend with ~0.011 mg L-1yr-1 with indicating almost equilibrium state. Meanwhile, SO42- and HCO3- concentrations display annual decreasing trend by 15.48 and 13.15%, respectively. At a zone of 0 to 5 m below the surface, the average hydraulic conductivity is 1.86×10-5 cm s-1, with a greater value (1.03×10-4cm s-1) in sand layer and a smaller value (2.50×10-8 cm s-1) in silt layer.

A Study on the Stability and Sludge Energy Efficiency Evaluation of Torrefied Wood Flour Natural Material Based Coagulant (반탄화목분 천연재료 혼합응집제의 안정성 및 슬러지 에너지화 가능성 평가에 관한 연구)

  • PARK, Hae Keum;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.271-282
    • /
    • 2020
  • Sewage treatment plants are social infrastructure of cities. The sewage distribution rate in Korea is reaching 94% based on the sewage statistics based in the year of 2017. In Korean sewage treatment plants, use of PAC (Poly Aluminum Chloride) accounts for 58%. It contains a large amount of impurities (heavy metal) according to the quality standards, however, there have been insufficient efforts to reinforce the standards or technically improve the quality, which resulted in secondary pollution problems from injecting excessive coagulant. Also, the increase in the use of chemicals is leading to the increases in the annual amount of sewage sludge generated in 2017 and the need to reuse sludge. As such, this study aims to verify the possibility of reusing sludge by evaluating the stability of heavy metals based on the injection of coagulant mixture during water treatment which uses the torrefield wood powder and natural materials, and evaluating the sedimentation and heating value of sewage sludge. As a result of analyzing heavy metals (Cr, Fe, Zn, Cu, Cd, As, Pb, and Ni) from the coagulant mixture and PAC (10%), Cr, Cd, Pb, Ni, and Hg were not detected. As for Zn, while its concentration notified in the quality standards for drinking water is 3 mg/L, only a small amount of 0.007 mg/L was detected in the coagulant mixture. Maximum amounts of over double amounts of Fe, Cu, and As were found with PAC (10%) compared to the coagulant mixture. Also, an analysis of sludge sedimentation found that the coagulant mixture showed a better performance of up to double the speed of the conventional coagulant, PAC (10%). The dry-basis lower heating value of sewage sludge produced by injecting the coagulant mixture was 3,378 kcal/kg, while that of sewage sludge generated due to PAC (10%) was 3,171 kcal/kg; although both coagulants met the requirements to be used as auxiliary fuel at thermal power plants, the coagulant mixture developed in this study could secure heating values 200 kal/kg higher than the counterpart. Therefore, utilization of the coagulant mixture for water treatment rather than PAC (10%) is expected to be more environmentally stable and effective, as it helps generating sludge with better stability against heavy metals, having a faster sludge sedimentation, and higher heating value.

Application of Electrochemical Technology for Reusing Biologically Treated Water (생물학적 처리수 재이용을 위한 전기화학 기술의 적용)

  • Kang, Gu-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.453-458
    • /
    • 2008
  • Laboratory experiments were conducted to investigate disinfection as well as removal of color and residual organics from reclaimed municipal wastewater by electrochemical processes with Nb/Pt anode installed. RNO was rapidly bleached by OH$\cdot$ and the second order rate constants of RNO removal were $\frac{0.223l}{mg{\cdot}min}$, $\frac{1.679l}{mg{\cdot}min}$ and $\frac{2.322l}{mg{\cdot}min}$ with for 5 A, 10 A, and 15 A, respectively, with r$^2$ of > 96%. In batch electrochemical processes, after 15 min at currency of 15 A and initial pH of 5, 7,5 and 9, COD$_{Mn}$ was below 4 mg/L, color unit below 5 degree and general bacteria was not detected, the concentration of which are suitable for drinking water regulation. In the continuous electrochemical process, with HRT of 3.7$\sim$49.2 min, free chlorine were 0.2$\sim$0.7 mg/L, general bacteria was not detected, color unit below 5 degree and THMs was 0.017 mg/L. Therefore, electrochemical process with Nb/Pt anode was employed satisfactory to meet for reusing biologically treated water as well as disinfection.

The Effect of Initial pH and Dose of $TiO_2$ on Chloroform Removal in Photocatalytic Process using Compound Parabolic Concentrator Reactor System (CPCs를 이용한 $TiO_2$ 광촉매반응공정에서 초기 pH와 촉매농도가 클로로포름 분해에 미치는 영향)

  • Cho, Sang-Hyun;Cui, Mingcan;Nam, Sang-Geon;Jung, Hee-Suk;Khim, Jee-Hyeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1147-1153
    • /
    • 2010
  • To evaluate the solar photocatalytic degradation efficiency of chloroform in a real solar-light driven compound parabolic concentrators (CPCs) system, $TiO_2$ was irradiated with a metalhalide lamp (1000 W), which has a similar wavelength to sunlight. The results were applied to a pilot scale reactor system by converting the data to a standardized illumination time. In addition, the effects of initial pH and the $TiO_2$ dose on the photocatalytic degradation of chloroform were investigated. The results were compared with the specific surface area (S.S.A) and particle size of $TiO_2$, which changed according to the pH, to determine the relationship between the S.S.A, particle size and the photocatalytic degradation of chloroform. The experiment was carried out at pH 4~7 using 0.1, 0.2, 0.4 g/L of $TiO_2$. The particle size and specific surface area of $TiO_2$ were measured. There was no significant difference between the variables. However, pH affects the particle size distribution and specific surface area of $TiO_2$. Inaddition, the activation of a photocatalyst did not show a linear relationship with the specific surface area of $TiO_2$ in the photocatalytic degradation of chloroform.

A Study on the Establishment of Total Organic Carbon in Drinking Water Standard (총유기탄소의 먹는물 수질기준 설정 연구)

  • Yu, Soon-Ju;Ahn, Kyung-Hee;Park, Su-Jeong;Kim, Mi-Ah;Choi, Ja-Yoon;Lee, Youn-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.661-666
    • /
    • 2009
  • In this study, total organic carbon (TOC) and potassium permanganate ($KMnO_4$) demand were examined for raw and finished tap water and the range of $KMnO_4$ demand in drinking water was investigated. By analyzing the relationship between TOC and $KMnO_4$ demand, the applicability of TOC as a drinking water standard and its regulation level was proposed. The average $KMnO_4$ demand was 1.3 mg/L in 4,638 samples from finished drinking water, tap water and finished water from small facilities. $KMnO_4$ demand of 95% of samples was 2.9 mg/L which was 29% of the drinking water standard (10 mg/L). At 12 major drinking water treatment plants, the average $KMnO_4$ demand in July and August was 8.1 and 2.4 mg/L for raw and finished water, respectively. TOC in July and August was 2.0 and 1.15 mg/L for raw and finished water, respectively. The correlation coefficient between $KMnO_4$ demand and TOC was as high as 0.8 in both raw and finished water and $KMnO_4$ demand was twice of TOC in finished water. Because the correlation coefficient and ratio between $KMnO_4$ demand and TOC varied according to season and the characteristics of raw water, it would be difficult to establish TOC standard just from the ratio of $KMnO_4$ demand to TOC. However, it is possible to set the TOC range based on the accumulated $KMnO_4$ demand data or from the satisfactory correlation results. Then, it would be reasonable to establish TOC standard level as 4 ~ 5 mg/L.

Geochemical Characteristics and Nitrates Contamination of Shallow Groundwater in the Ogcheon Area (옥천지역 천부지하수의 지구화학적 특성 및 질산염 오염 특성)

  • Lee, In-Gyeong;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.43-52
    • /
    • 2010
  • The geochemical and nitrogen isotopic analyses for shallow groundwater of Ogcheon area were carried out to characterize the geochemical characteristics of the groundwater and to identify the source of nitrate. Groundwater shows a neutral pH to weakly alkalic condition with pH values ranging from 6.9 to 8.4. The average of EC, Eh and DO is $344.2\;{\mu}s/cm$, 195 mV, 4 mg/L, respectively. According to piper diagram, chemical composition of groundwater is dominantly characterized by Ca-$HCO_3$ type. On the other hand, groundwater type in the study area include Ca-Cl+$NO_3$ type that were highly influenced by agricultural activities. $NO_3$-N concentration of the collected samples(n=45) range from 12.4 to 34.2 mg/l. These data show that the $NO_3$-N concentration exceeds Korea Drinking Water Standard (10 mg/l). The $\delta^{15}N-NO_3$ values range from $2.7^{\circ}/_{\circ\circ}$ to $18.8^{\circ}/_{\circ\circ}$. The enrichments of heavy isotope in the groundwater indicate that major origin of nitrate pollution were associated with animal and human waste. Also the denitrification may have partly contributed as one of the sources of nitrogen.