Application of Electrochemical Technology for Reusing Biologically Treated Water

생물학적 처리수 재이용을 위한 전기화학 기술의 적용

  • Kang, Gu-Young (Department of Environmental Science, Hankuk University of Foreign Studies)
  • Published : 2008.04.30

Abstract

Laboratory experiments were conducted to investigate disinfection as well as removal of color and residual organics from reclaimed municipal wastewater by electrochemical processes with Nb/Pt anode installed. RNO was rapidly bleached by OH$\cdot$ and the second order rate constants of RNO removal were $\frac{0.223l}{mg{\cdot}min}$, $\frac{1.679l}{mg{\cdot}min}$ and $\frac{2.322l}{mg{\cdot}min}$ with for 5 A, 10 A, and 15 A, respectively, with r$^2$ of > 96%. In batch electrochemical processes, after 15 min at currency of 15 A and initial pH of 5, 7,5 and 9, COD$_{Mn}$ was below 4 mg/L, color unit below 5 degree and general bacteria was not detected, the concentration of which are suitable for drinking water regulation. In the continuous electrochemical process, with HRT of 3.7$\sim$49.2 min, free chlorine were 0.2$\sim$0.7 mg/L, general bacteria was not detected, color unit below 5 degree and THMs was 0.017 mg/L. Therefore, electrochemical process with Nb/Pt anode was employed satisfactory to meet for reusing biologically treated water as well as disinfection.

본 연구는 생활하수 최종처리수의 색도, 잔류 유기물질 제거 및 소독에 관한 연구를 Nb/Pt Anode 전극으로 구성된 전기분해장치를 이용하여 수행하였다. RNO는 OH$\cdot$에 의하여 빠르게 탈색시키며, 전류세기 5 A, 10 A, 15 A에서 RNO의 2차 분해속도는 각각 $\frac{0.223l}{mg{\cdot}min}$, $\frac{1.679l}{mg{\cdot}min}$, $\frac{2.322l}{mg{\cdot}min}$로 96% 이상의 r$^2$ 조사되었다. 회분식 전기분해장치에서 전류세기 15 A와 초기 pH 5, 7.5, 9일 때 15분 후 COD$_{Mn}$ 농도는 4 mg/L 미만, 색도는 5도 미만, 일반세균은 불검출로 먹는물 수질 기준값으로 조사되었다. 전기분해 연속 시스템의 HRT 3.7$\sim$49.2분에서 유리염소는 0.2$\sim$0.7 mg/L, 일반세균은 불검출, 색도는 5도 미만과 THMs는 0.017 mg/L이다. 그러므로 Nb/Pt anode 전기분해 공정은 소독뿐만 아니라 생물학적 처리수의 재이용 기술로 적용될 수 있다.

Keywords

References

  1. 신정훈, 상병인, 정윤철, 정연규, "Membrane-attached biofilm reactor(MABR)에서의 독립영양 미생물을 이용한 질소제거," 한국물환경학회지, 21(6), 624-629(2005)
  2. 류홍덕, 이상일, "수리학적 체류시간에 따른 부유성장 미생물을 이용한 공정과 하이브리드 공정의 유기물, 질소 및 인 제거 특성비교," 대한환경공학회지, 28(1), 15-25(2006)
  3. Kang, Y., Cho, Y., and Chung, E., "Development of the wastewater reclamation and reusing system with a submerged membrane bioreactor combined bio-filtration," Desalination, 202, 68-76(2007) https://doi.org/10.1016/j.desal.2005.12.040
  4. Boero, V. J., Bower, A. R., and Eckenfelder, Jr. W. W., "Molecular weight distribution of soluble microbial products in biological systems," Water Sci. Technol., 34, 241-248(1996) https://doi.org/10.1016/0273-1223(96)00651-8
  5. Pribyl, M., Tucek, F., Wilderer, P. A. and Wanner, J., "Amount and nature of soluble refractory organic produced by activated sludge microorganisms in SBR and continuous flow reactors," Water Sci. Technol., 35(1), 27-34(1996)
  6. Gomez, M., Plaza, F., Garralon, G., Perez, J., and Gomez, M. A., "A comparative study of tertiary wastewater treatment by physico-chemical-UV process and macrofiltrationultrafiltration technologies," Desalination, 202, 369-376 (2007) https://doi.org/10.1016/j.desal.2005.12.076
  7. 손현주, 조민, 윤제용, "소금물 전기분해 혼합산화제의 상승 소독 효과," 대한상하수도․한국물환경학회 공동추계학술발표회, 대구, pp. A85-A88(2002)
  8. 이경혁, 임재림, 이두진, 김성수, 안효원, "전기분해 방식에 의한 혼합산화제 소독 특성 평가," 상하수도학회지, 19(5), 625-631(2005)
  9. Leite, R. H., Cognet, P., Wilhelm, A. M., and Delmas, H., "Anodic oxidation of 2,4-dihydroxybenzonic acid for wastewater treatment," J. Appl. Electrochem., 33, 693-701(2003) https://doi.org/10.1023/A:1025056001368
  10. Jonnalagadda, S. B. and Nadupalli, S., "Effluent treatment using electrochemically bleached seawater-oxidative degradation of pollutants," Talanta, 64, 18-22(2004) https://doi.org/10.1016/j.talanta.2003.11.045
  11. Feng, C., Sugiura, N., Shimada, S., and Maekawa, T., "Development of a high performance electrochemical wastewater treatment system," J. Hazard. Mater., B103, 65-78(2003)
  12. Diao, H. F., Li, X. Y., Gu, J. D., Shi, H. C., and Xie, Z. M., "Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and Fenton reaction," Pro. Biochem., 39(11), 1421-1426(2004) https://doi.org/10.1016/S0032-9592(03)00274-7
  13. Comninellis, C., "Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for wastewater treatment," Electrochim. Acta, 39(11-12), 1857-1862(1994) https://doi.org/10.1016/0013-4686(94)85175-1
  14. Simond, O., Schaller, V., and Comninellis, C., "Theoretical model for the anodic oxidation of organics on metal oxide electrodes," Electrochim. Acta, 42(13-14), 2009-2012(1997) https://doi.org/10.1016/S0013-4686(97)85475-8
  15. Fukatsu, K. and Kokot, S., "Degradation of poly(ethylene oxide) by electro-generated active species in aqueous halide medium," Polym. Degrad. Stab., 72, 353-359(2001) https://doi.org/10.1016/S0141-3910(01)00037-4
  16. 환경부. 수질오염공정시험방법, 사단법인 전국 자가 측정 대행자 협의회(1998)
  17. APHA, AWWA, and WEF, Standard Methods for the Examination of Water and Wastewater, 19th Edition, Edited by Eaton, A. D., Clesceri, L. S., and Greenberg, A. E., American Public Health Association, Washington, DC.(1995)
  18. Snoeyink, V. and Jenkins, D., Water chemistry, Wiley, pp. 298-312(1980)