• 제목/요약/키워드: 맵 모델

검색결과 362건 처리시간 0.027초

과학기술 지식맵의 형태적 분류와 정보분석 관점의 지식맵 사례 도출 (Morphological Classification of Knowledge Map for Science and Technology and Development of Knowledge Map Examples in the View of Information Analysis)

  • 이방래;이준영;김도현;노경란;양명석;권오진;최광남;김한준
    • 한국콘텐츠학회논문지
    • /
    • 제13권11호
    • /
    • pp.461-476
    • /
    • 2013
  • 본 연구에서는 기존 지식맵을 형태적으로 분류하고 추가적으로 개발되어야 할 지식맵의 유형을 제시함과 동시에 정보분석 관점에서 활용할 만 한 가치가 있는 과학기술 지식맵 모델을 도출하였다. 기존 연구에서 나타난 지식맵의 정의들을 살펴보고 본 연구에서의 정의와 범위를 다시 정리하였다. 또한 육하원칙을 정보속성으로 취하고 이를 기반으로 주요 과학기술 지식맵을 그 형태에 따라서 단순 도표, 트렌드 지식맵, 분포도 지식맵, 네트워크 지식맵으로 분류하였다. 네 가지 과학기술 지식맵 유형에 따라 주요 지식맵의 세부 모델을 정리하고 추가적으로 개발이 필요한 지식맵 모델의 유형도 제시하였다. 마지막으로 정보분석 관점에서 유용한 13가지 지식맵 모델 사례를 도출하고 각 세부 모델에 대한 지식맵의 유형, 정보 항목, 모델의 설명 및 활용 목적 등을 제시하였다.

확장된 토픽맵을 이용한 제품 데이터에서의 관점의 표현 (Representing the views of product data using extended Topic Maps)

  • 채희권;최영환;김광수
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.1157-1164
    • /
    • 2003
  • 제품개발과정에서 생성된 제품정보모델은 시간에 따라 계속 변하고 미확정적인 정보가 포함된 UDM(Under Defined Model)이다. 정보모델에서 관점(viewpoint)은 UDM을 표현하고 관리하는 중요한 요소이다. 토픽맵(Topic Map) 이용한 정보모델은 관점의 표현이 용이하며, 관점에 따라 인간이 정보를 이해하고 조작하는 것을 돕는다. 그러나 토픽맵은 제품개발과정의 정보모델과 같은 UDM의 표현은 가능하나, 적합하지는 않다. 따라서 본 논문에서는 토픽맵이 UDM에 적합하도록 토픽맵의 문법을 확장하였다. 그리고 UDM으로부터 전자상거래에 적용 가능만 FDM(Fully Defined Model)으로 변화하는 과정에 대하여 논하였다. 관점이 적용된 UDM으로는 제품을 개발하는 과정 중에 생성되는 제품 모델을 적용하였으며, 대량생산이 된 이후의 제품 모델이나 제품개발단계에서 결정이 이루어진 후의 제품모델을 FDM 또는 UDM보다 모델의 의미가 보다 확정적인 확정적UDM을 사용하였다. 그리고 세탁기의 제품정보모델을 구현 예로 사용하여, UDM이 FDM 또는 확정적UDM으로 변화하는 과정을 설명하였다.

  • PDF

게임 캐릭터를 위한 폴리곤 모델 단순화 방법 (Polygonal Model Simplification Method for Game Character)

  • 이창훈;조성언;김태훈
    • 한국항행학회논문지
    • /
    • 제13권1호
    • /
    • pp.142-150
    • /
    • 2009
  • 컴퓨터 게임에서 사용하는 복잡한 3차원 캐릭터 모델을 단순한 모델로 만드는 것은 매우 중요하다. 제안 방법은 3차원 게임 캐릭터에서 특징선을 추출하여 모델을 단순화 시키는 새로운 방법에 대해 제안한다. 주어진 3차원 캐릭터 모델은 텍스처 정보를 포함하고 있다. 3차원 캐릭터 모델에서의 텍스처 및 곡률의 변동을 이용해서 2차원 맵인 모델특징맵(Model Feature Map)을 생성한다. 모델특징맵은 곡률 맵(curvature map)과 텍스처 맵(texture map)으로부터 생성되며, 본 맵을 통해 에지 추출 기법을 이용하여 특징선을 추출한다. 모델특징맵은 표준 영상처리툴을 이용해 쉽게 편집할 수 있다. 실험을 통하여 본 알고리즘의 효율성을 보여주며, 실험은 얼굴 캐릭터에 한정하지 않는다.

  • PDF

의사 깊이맵을 이용한 다중 디코더 기반의 고정밀 분할 딥러닝 모델 개발 및 효율적인 학습 전략 (Multi-Decoder DNN Model for High Accuracy Segmentation using Pseudo Depth-Map and Efficient Training Strategy)

  • 김유진;김동영;이정근
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.727-730
    • /
    • 2024
  • 최근 딥러닝 기술이 급속히 발전하며 현대 사회의 다양한 응용분야에서 빠르게 적용되고 있다. 특히 영상 기반의 딥러닝 기술은 자연어 처리와 함께 인공지능 기술의 핵심 연구 분야로 많은 연구가 진행되고 있다. 논문에서는 최근 많은 연구가 진행되고 있는 영상의 의미적 분할 (Semantic Segmentation) 성능을 향상하기 위한 연구를 진행한다. 특히 모델에서 고정밀의 의미적 분할을 수행할 수 있도록 추가적인 정보로써 의사 깊이맵 (Pseudo Depth-Map)을 활용하는 방법을 제안하였다. 더불어, 의사 깊이맵을 모델 상에서 효과적으로 학습시키기 위하여 다중 디코더 모델과 학습 효율을 높이는 학습 스케줄링 전략을 제안한다. 의사 깊이맵과 다중 디코더 모델 기반의 제안 모델은 기존 의미적 분할 모델과 비교하여 iIoU 기준 2%의 성능 향상을 보였다.

음향 장면 분류에서 히트맵 청취 분석 (Listenable Explanation for Heatmap in Acoustic Scene Classification)

  • 서상원;박수영;정영호;이태진
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.727-731
    • /
    • 2020
  • 인공신경망의 예측 결과에 대한 원인을 분석하는 것은 모델을 신뢰하기 위해 필요한 작업이다. 이에 컴퓨터 비전 분야에서는 돌출맵 또는 히트맵의 형태로 모델이 어떤 내용을 근거로 예측했는지 시각화 하는 모델 해석 방법들이 제안되었다. 하지만 오디오 분야에서는 스펙트로그램 상의 시각적 해석이 직관적이지 않으며, 실제 어떤 소리를 근거로 판단했는지 이해하기 어렵다. 따라서 본 연구에서는 히트맵의 청취 분석 시스템을 제안하고, 이를 활용한 음향 장면 분류 모델의 히트맵 청취 분석 실험을 진행하여 인공신경망의 예측 결과에 대해 사람이 이해할 수 있는 설명을 제공할 수 있는지 확인한다.

  • PDF

상호작용 맵에서 단백질 기능 예측 (A Protein Function Prediction in Interaction Maps)

  • 정재영;최재훈;박종민;박선희
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.286-288
    • /
    • 2004
  • 단백질 상호작용 데이터는 현 생물정보학에서 기능이 알려지지 않은 단백질의 기능 예측에 높은 신뢰성이 있는 프로티오믹스의 계산 모델에 이용되고 있다. 일반적으로 이 단백질 기능 예측 알고리즘들은 대규모의 2차원 단백질-단백질 상호작용 맵에서 Guilt-by-Association 개념 기반으로 개발되고 있다. 본 논문에서는 단백질-단백질 상호작용 데이터를 이용한 그래프 기반 단백질 기능 예측 모델을 개발하였다. 특히, 이 모델은 대량의 상호작용 데이터에서 정확한 기능 예측을 수행할 수 있다는 장점을 가지고 있다. 이를 위해 Yeast에 대한 단백질 상호작용 맵, Homology 및 Interaction Generality를 이용하여 이 모델을 평가하였다.

  • PDF

세그먼트 변화를 추적하는 다차원척도법

  • 김주영
    • Asia Marketing Journal
    • /
    • 제1권4호
    • /
    • pp.1-23
    • /
    • 1999
  • 포지셔닝맵은 마케팅전략의 핵심인 STP전략을 세우는데 유용한 도구이나 포지셔닝맵을 그리기 위해서는 여러 가지 분석도구를 혼합하여 사용하여야 하였다. 본 논문에서는 완벽하지 않은 소비자 pick any/N자료와 상표의 특성자료를 이용하여, 세분시장을 모델 내에서 구분하고, 이들의 이상점을 찾아주고, 나아가서 시간의 흐름에 따라 이상점의 변화를 찾아주면서 포지셔닝맵을 그려주는 새로운 external 다차원척도모형을 제시하고 있다. 모델의 성과를 확인하기 위해서 차원의 변화, 세분시장변화, 상표구성의 변화 및 소비자표본의 변화를 임의로 만들어서 가상의 자료를 통해서 검증하였다. 실제로 사용해 보려면 저자의 홈페이지에서 프로그램을 다운 받을 수도 있다.

  • PDF

Knowledge Distillation based-on Internal/External Correlation Learning

  • Hun-Beom Bak;Seung-Hwan Bae
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권4호
    • /
    • pp.31-39
    • /
    • 2023
  • 본 논문에서는 이종 모델의 특징맵 간 상관관계인 외부적 상관관계와 동종 모델 내부 특징맵 간 상관관계인 내부적 상관관계를 활용하여 교사 모델로부터 학생 모델로 지식을 전이하는 Internal/External Knowledge Distillation (IEKD)를 제안한다. 두 상관관계를 모두 활용하기 위하여 특징맵을 시퀀스 형태로 변환하고, 트랜스포머를 통해 내부적/외부적 상관관계를 고려하여 지식 증류에 적합한 새로운 특징맵을 추출한다. 추출된 특징맵을 증류함으로써 내부적 상관관계와 외부적 상관관계를 함께 학습할 수 있다. 또한 추출된 특징맵을 활용하여 feature matching을 수행함으로써 학생 모델의 정확도 향상을 도모한다. 제안한 지식 증류 방법의 효과를 증명하기 위해, CIFAR-100 데이터 셋에서 "ResNet-32×4/VGG-8" 교사/학생 모델 조합으로 최신 지식 증류 방법보다 향상된 76.23% Top-1 이미지 분류 정확도를 달성하였다.

VCM 의 바텀-업 MSFF 를 이용한 MSFC 기반 멀티-스케일 특징 압축 네트워크 개선 (Enhancement of MSFC-Based Multi-Scale Features Compression Network with Bottom-UP MSFF in VCM)

  • 김동하;한규웅;차준석;김재곤
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.116-118
    • /
    • 2022
  • MPEG-VCM(Video Coding for Machine)은 입력된 이미지/비디오의 특징(feature)를 압축하는 Track 1 과 입력 이미지/비디오를 직접 압축하는 Track 2 로 나뉘어 표준화가 진행 중이다. 본 논문은 Track 1 의 비전임무 네트워크로 사용하는 Detectron2 의 FPN(Feature Pyramid Network)에서 추출한 멀티-스케일 특징을 효율적으로 압축하는 MSFC 기반의 압축 모델의 개선 기법을 제시한다. 제안기법은 해상도를 줄여서 단일-스케일 압축맵을 압축하는 기존의 압축 모델에서 저해상도 특징맵을 고해상도 특징맵에 바텀-업(Bottom-Up) 구조로 합성하여 단일-스케일 특징맵을 구성하는 바텀-업 MSFF 를 가지는 압축 모델을 제시한다. 제안방법은 기존의 모델 보다 BPP-mAP 성능에서 1 ~ 2.7%의 개선된 BD-rate 성능을 보이며 VCM 의 이미지 앵커(image anchor) 대비 최대 -85.94%의 BD-rate 성능향상을 보인다.

  • PDF

은닉 마르코프 모델을 이용한 실내 네트워크 맵 매칭 (Indoor Network Map Matching by Hidden Markov Model)

  • 김태훈;이기준
    • Spatial Information Research
    • /
    • 제23권3호
    • /
    • pp.1-10
    • /
    • 2015
  • 최근 다양한 센서들의 성능 개선으로 실내측위가 가능해졌다. 하지만 Wi-Fi 라디오 맵을 이용한 실내 측위나 가속도 센서와 디지털 캠퍼스를 이용한 실내 측위는 아직 상당한 오차를 가지고 있어 지금까지의 연구는 실내 측위의 정확성을 높이는 측위 기술에 대해 많이 진행되었다. 하지만 좌표단위가 아닌 방 단위의 정확성을 가진 실내 맵 매칭이 가능하다면 Wi-Fi 라디오 맵, 가속도 센서 기반의 현재 실내측위기술로도 실내 서비스가 가능하다. 이에 본 연구는 방 단위의 정확성을 가지는 실내 맵 매칭을 위해, 실내 네트워크 맵 매칭에 대해 정의하고, 이를 수행하며 생기는 이슈들에 대해 살펴보고, 이를 해결하기 위해 은닉 마르코프 모델을 사용한 방안에 대해 제시한다.