• Title/Summary/Keyword: 맨드릴

Search Result 28, Processing Time 0.032 seconds

The Trend of New Technology in Metal Spinning (Metal 스피닝의 신기술 동향)

  • Lee, Tae-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.79-85
    • /
    • 2012
  • This study investigates mainly on the technical development trend through the published papers, such as asymmetric metal spinning, metal spinning in heat treatment conditions and free mandrel spinning. Although the classical spinning, so called conventional, shear, tube spinning, uses the axisymmetric shaped mandrel(which is same inner shape of the final product), in new technologies the mandrel can be asymmetric one, spinning can be done without mandrel and also spinning is done with heat treatment together.

Influences of Air Cavity on the Sensitivity of a Mandrel Type fiber Optic Acoustic Sensor (Air cavity가 맨드릴형 광-음향센서의 감도특성에 미치는 영향)

  • 임종인;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.3-7
    • /
    • 2000
  • This paper is on the sensitivity characteristics of a concentric composite mandrel type fiber optic acoustic sensor with inclusion of an air cavity With the finite element method, we have analyzed sensitivity variation of the sensor in relation to its geometrical factors such as thickness of the air cavity, thickness of the foaming layer, and the ratio of inner diameter/outer diameter of the mandrel. Results of the analysis suggest a thicker air cavity, a thinner foaming layer, and a smaller ratio of the inner diameter/outer diameter of the mandrel to be desirable for higher sensitivity. The sensor structure designed with the above rules provides the sensitivity of about 0.8dB higher than that of a normal concentric composite mandrel sensor without the inherent air cavity.

  • PDF

Characteristics Investigation and Design of the Mandrel for Fiber Optic Acoustic Sensor (광섬유 음향 센서용 맨드릴 설계 및 특성 연구)

  • Lee, Jongkil;Ha, Tae-Hyun;Lee, June-Ho
    • 대한공업교육학회지
    • /
    • v.34 no.2
    • /
    • pp.331-345
    • /
    • 2009
  • In this research Sagnac interferometer three different types of mandrel are suggested and this fiber optic sensor is using in monitoring of electric transformer. Vibration characteristics of those mandrels were analyzed and finally more sensitivity mandrel are suggested. Three different mandrels using in fiber optic sensor are hollow cylinder with outer bump, pure hollow cylinder, hollow cylinder with inner bump. Natural frequencies and mode shapes are investigated using finite element method. Mode shape are considered at the frequency range from 2 kHz to 20 kHz. Fundamental dimensions of the hollow cylinder type's mandrel are 30 mm in outer diameter, 50 mm in length, 1 mm in cylinder thickness, $2mm{\times}2mm$ in bump size. Based on the finite element results, when the outer acoustic frequency is near 11 kHz outer bump type and hollow cylinder can get higher sensitivity. Near 17 kHz outer bump and inner bump mandrel can get higher sensitivity. Near 20 kHz hollow cylinder and inner bump mandrel is useful. This results can be applied to design of fiber optic sensor using in monitoring the electrical transformer. Several MHz of outer acoustic frequency can be easily detected using more sensitive mandrel in pursuing expand this technique.

Investigation of Sound Pressure Detection of Fiber Optic Sensor in Transformer Oil According to TLS and CW Laser Source (TLS와 CW 광원에 따른 트랜스포머 오일 내에서 광섬유 센서의 음압 감지 특성 연구)

  • Lee, Jong-Kil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • To substitute TLS in the hybrid system which is combined with Sagnac interferometer and fiber bragg grating (FBG) it is necessary to investigate how the laser source (TLS and CW) and sensor material variate the response of fiber optic sensor. Two different hollow cylinder type mandrel materials are proposed which are PTFE and PTFE+carbon and 18 m optical fiber is wounded at the mandrel surface. CW laser source experiments had been done in the oil tank which is filled with transformer oil in the 1 kHz~20 kHz frequency range. Also Sagnac interferometer fiber optic sensor is combined with FBG called hybrid system and TLS used as a light source. Based on the experimental results PTFE sensor showed more higher magnitude of detection signal rather than carbon sensor and this result is agreement with the McMahon's theoretical results. Phase variation is inversely proportional to the elastic modulus of the mandrel material. In PTFE fiber sensor, tunable laser source showed more higher performance rather than CW case. Therefore, TLS fiber optic sensor can be applied to the hybrid system which is combined with Sagnac and FBG.

Test Evaluation of a Linerless Composite Propellant Tank Using the Composite Collapsible Mandrel (복합재 분리형 맨드릴을 이용한 라이너 없는 복합재 추진제 탱크에 대한 시험 평가)

  • Seung Yun Rhee;Kwangsoo Kim;Young-Ha Yoon;Moo-Keun Yi;Hee Chul Kim
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.132-139
    • /
    • 2023
  • A linerless composite propellant tank was designed and manufactured by using the carbon fiber-reinforced composite materials which have superior strength-to-weight ratio in order to reduce weight of the tank. In this research, we designed a sub-scale composite propellant tank with a diameter of 800 mm to withstand an MEOP of 1.7 MPa. We manufactured the boss of the tank by using the same composite materials to reduce the thermal expansion difference between the boss and the secondary-bonded composite layers of the barrel in the cryogenic environment. We used the collapsible mandrel to manufacture the tank without any liner. The mandrel was made from epoxy-based composite tooling prepregs to reduce weight of the mandrel. We manufactured the test tanks by laying up the carbon fiber fabric prepregs manually on the mandrel and then applying the autoclave cure process. We performed a proof test, a helium tightness test, a repeated pressurization test, and a burst test in room temperature. The test results demonstrate that the proposed design and manufacture process satisfies all strength requirements as well as an anti-leakage requirement.

New Technology of Metal Spinning (Metal 스피닝의 신기술 동향)

  • Lee, Tae-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.265-271
    • /
    • 2011
  • This paper investigates mainly on the technical development trend such as asymmetric technology and the metal spinning in heat treatment conditions. Although the classical spinning, so called conventional, shear, tube spinning, uses the axisymmetric shaped mandrel(which is same inner shape of the final product), new technology does not use it. and also spinning can be done with free mandrel.

  • PDF

Influence of Environmental Conditions on the Sensitivity of a Mandrel Type Fiber Optic Acoustic Sensor (주위 환경이 맨드릴형 광-음향센서의 감도특성에 미치는 영향)

  • 임종인;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.8-12
    • /
    • 2000
  • This paper describes the sensitivity stability of a mandrel type fiber optic acoustic sensor with respect to its environmental conditions such as hydrostatic pressure and underwater temperature. The sensors under consideration have various mandrel structures such as a cylindrical mandrel, a concentric composite mandrel, and an air-backed concentric composite mandrel. The analysis results show that the sensors have such good robustness, less than 0.15dB, in its sensitivity with respect to the variation in hydrostatic pressure. Further, the nylon concentric composite mandrel type sensor including an air cavity turns out to have the most superior stability than others to the underwater temperature variations.

  • PDF

Sensitivity Analysis of a Mandrel Type Fiber Optic Acoustic Sensor Using an Analytical Method (해석적 방법에 의한 맨드릴형 광-음향센서의 감도특성 분석)

  • 임종인;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.92-99
    • /
    • 2000
  • In this paper, theoretical acoustic sensitivity was derived to describe acousto-optic transduction property of the mandrel type fiber optic acoustic sensor with respect to external acoustic field. The acoustic sensitivity was analyzed in relation to both material properties and geometrical influence factors of the constitutional parts of the sensor, analytically. Validity of the theoretical results were verified through comparison with the finite element analysis results. The variation trends of the sensitivity of the sensor in relation to the studied parameters showed good agreement for the two analysis methods. According to the results, it is considered more economical to design the basic structure of the sensor with the analytic equations developed in this paper, and then to carry out further detailed analysis with the finite element method for specific points of design interest.

  • PDF