• Title/Summary/Keyword: 맥동 특성

Search Result 206, Processing Time 0.02 seconds

Cerebral Dural Sinus Thrombosis - Case Report - (뇌경막 정맥동 혈전증 - 증례보고 -)

  • Han, Young-Min;Lee, Jong-Phil;Hwang, Hyung-Sik;Lim, Dae-Chul;Song, Joon-Ho;Ahn, Myung-Su
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.3
    • /
    • pp.389-394
    • /
    • 2001
  • Cerebral dural sinus thrombosis(CDST) has been described as a rare disease with a variety of patho-etiological factors. The diagnosis of CDST is difficult due to various symptoms and signs, none of which is specific to CDST. But timely diagosis is critical for effective management. The introduction and widespread use of computed tomography(CT), magnetic resonance imaging(MRI) and cerebral angiography made early diagnosis of CDST possible. In particular, MR venography is the most useful tool for establishing a correct diagnosis quickly. In early literature, mortality ranked between 30% and 50% but in more recent series it is between 5.5% and 30%. With the advent of diagnostic and therapeutic tools, early diagnosis and proper management has made the prognosis better. The appropriate therapy for CDST, however, has been the subject of much cortroversy. Individual variations of the venous system and collateral vessels are key factors to decide the proper treatment. In this report, we present two cases with symptomatic CDST treated without open surgical or direct endovascular interventions with good outcome.

  • PDF

Analysis for the Flow and Wall Shear Stress with the Diameter Ratios of an Abdominal Aortic Aneurysm in a Pulsatile Flow (맥동 유동에서 복부 대동맥류의 직경비에 따른 유동 및 벽면전단응력 해석)

  • 모정하
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.181-187
    • /
    • 2002
  • The objective of the present study was to two-dimensionally investigate the characteristics of flow and wall shear stress under pulsatile flow in the aneurysm which is a local dilatation of the blood vessel for pulsatile flow. The numerical simulation using the commercial software were carried out for the diameter ratios(ratio of maximum diameter of aneurysm to the diameter of blood vessel) ranging from 1.5 to 2.5 and Womersley number, 15.47. It was shown that a recirculating flow at the bulge was developed and disappeared for one Period and the strength of vortex increased with the diameter ratio Especially. at time of 3.19s. the very weak recirculating flow was developed at the left upper sites of the aneurysm. The maximum values of the wall shear stress increased in Proportion to the diameter ratio. However. the Position of a maximum wall shear stress was the distal end of the aneurysm(z = 35mm) regardless of the diameter ratios.

The Characteristics of Pressure Pulsation according to Operating Condition of a S.I Engine for Motorcycle (이륜차용 Sl엔진의 운전 조건에 따른 맥동 특성)

  • Lee Kihyung;Nam Hosung;Kim Yongla;Bae Jaeil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.10-16
    • /
    • 2005
  • Recently, the international regulations about the exhaust emissions of the motorcycle have been strengthened. The electrically controlled fuel injection type motorcycle has been emphasized to meet with this regulation. However, since the pulsation phenomenon happens in the intake port of the motorcycle because of the characteristic of high speed and the smaller layout than the passenger car, there are many difficulties to select the factor about control parameters needed to develop the ECU system. In this paper, the pulsation values measured from the engine test were compared with the calculated one by WAVE, and it was analyzed the pulsation characteristic according to the driving condition and estimated the mass flow rate. This research showed that the lowest point of the pressure gets lowin the low load and the pulsation of pressure were increased in the high load. Also, the simulation program was verified by showing good prediction of the pulsation and air mass flow rate.

[ NOX ] Emission Characteristics in Radiant Tube Burner with Oscillating Combustion Technology (맥동연소기술이 접목된 복사관 버너에서의 NOX 배출 특성)

  • Cho, Han-Chang;Cho, Kil-Won;Kim, Hoo-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.100-106
    • /
    • 2008
  • An experimental study was carried out in a small-scale test furnace to investigate the performance, such as $NO_X$ emission, enhancement of heat transfer, uniformity of temperature, and etc, of oscillating combustion applied in radiant tube burner system. A premixed type burner and a cyclic oscillating control valve were designed and used. The fuel, used commercial LPG in this study, was only oscillated using the cyclic oscillating control valve. As oscillating combustion was applied in radiant tube burner system, it is found that $NO_X$ emission, compared to no oscillation, could be reduced by 38% at $90{\sim}120rpm\;(1.5{\sim}2.0Hz)$. However, as oscillating frequency was increased, effect of abatement of $NO_X$ emission is gradually reduced. From the measurement of furnace heating time from $100^{\circ}C$ to $720^{\circ}C$, heat transfer is increased by 11.5% at the oscillation of 120rpm. Temperature distribution of radiant tube surface is more uniform at oscillation of 120rpm with decrease of the peak temperature and increase of low temperature. From these results, it is confirmed that oscillating combustion is useful in radiant tube burner system.

The Effects of Intake Pulsating Flow on Volumetric Efficiency in a Diesel Engine (디젤기관의 흡기 맥동류가 체적효율에 미치는 영향)

  • Kang, H.Y.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.19-25
    • /
    • 2005
  • Empirical experiments have been undertaken to investigate the effects of Intake Pulsating Flow on volumetric efficiency in a diesel engine. Waves occurs in the manifolds of engine owing to the periodic nature of the induction and exhaust processes caused by piston motion. During induction process, as waves travel both directions, they are reflected and interacted each other and pressure waves are transmitted through it. Hence, the flow become more complex and unsteady flow. These pressure waves act upon intake pulsating flow and affects on volumetric efficiency. In this paper the effects of change in length of induction pipes and wide range of engine speed on volumetric efficiency was examined and evaluated. It was found that volumetric efficiency was affected by intake pulsating flow with engine speed and the pipe length. The results obtained were considered by adopting a theory of wave action.

  • PDF

A study on the characteristic of the anodic dead-end mode PEM fuelcell and performance improvement by pulsation effect (수소 데드 앤드 연료전지의 특성 및 맥동을 이용한 성능 향상에 관한 실험적 연구)

  • Choi, Jong-Won;Hwang, Yong-Sheen;Kim, Sung-Il;Ha, Jeong-Hoon;Park, Joon-Ho;Cha, Suk-Won;Kim, Min-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.336-340
    • /
    • 2009
  • This paper presents experimental results carried out on the purge characteristic of the anodic dead-end mode fuelcell and how to improve the cell performance by pulsation effects. The dead-end mode fuelcell has some merits that a fuel supplying device is not needed and the cell power is higher than that in the open mode fuelcell. However, the purge is necessary for preventing the porous media from being flooded by liquid water formed in the channel. At this time, the un-reacted fuel is discharged with the liquid water together in purge process. The discharged fuel can make the fuel efficiency lower. Therefore, the number of purge times should be decreased for the better fuel efficiency. In this study, the outlet of the anode channel was equipped with a purge solenoid valve and a pulsation generator. The purge times was decreased when the current density decreased and operation pressure increased without the pulsation effects. In addition, when the pulsation effects such as various frequencies or amplitudes were applied, purge times was alleviated up to 40%.

  • PDF

Pulsatile Flow Analyses of Newtonian Fluid and Non-Newtonian Pluid in Circular Tube (원관내 뉴턴유체와 비뉴턴유체의 맥동유동특성)

  • Cho, Min-Tae;Roh, Hyung-Woon;Suh, Sang-Ho;Kim, Jae-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1585-1596
    • /
    • 2002
  • The objectives of the present study are to numerically and experimentally investigate the steady and pulsatile flow phenomena in the circular tubes, to quantitatively compare the flow characteristics of Newtonian and non-Newtonian fluids, and to find meaningful hemodynamic information through the flow analysis in the human blood vessels. The particle image velocimetry is adopted to visualize the flow fields in the circular tube. and the results from the particle image velocimetry are used to validate the results of the numerical analysis. In order to investigate the blood flow phenomena in the circular tube. constitutive equations, which are suitable to describe the rheological properties of the non-Newtonian fluids. are determined, and the steady and pulsatile momentum equations are solved by the finite volume prediction. The velocity vectors of the steady and pulsatile flow in the circular tube obtained by the particle image velocimetry arc in good agreement with those by the numerical analysis. For the given mass flow rate. the axial velocity profiles of the Newtonian and the non-Newtonian fluids appear differently. The pulsatile flow phenomena of the Newtonian and the non-Newtonian fluids are quite different from those of the steady flow.

An experimental study on the dynamic behavior in an aero-valved pulsating combustor (공기밸브형 맥동연소기의 동적 특성에 관한 실험적 연구)

  • 임광열;최병륜;오상헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.846-855
    • /
    • 1987
  • The experimental study was carried out to investigate the performance characteristics of the aero-valved pulsating combustor designed to increase the practical applications of the system. The geometric effect on the stable condition and the dynamic behavior of the system is identified. The equivalence ratio, the inflammability limit, the operating frequency, and thrust were also measured when the system oscillated stably. It is found that while the operating condition is sensitive to the diameter of the inlet pipe and the length of the tailpipe, the maximum value of the turn down ratio was obtained up to 3.2. The measured air flow rate shows that the equivalence ratio increases monotonously with the increasing fuel flow rate and decreasing air inlet diameter and tailpipe length. The measured operating frequency can be approximated by the simple linear equation and the discrepancy is within five percent. The system produced the maximum total thrust of 14N and the minimum specific fuel consumption of 0.155 Nm$^{3}$/h.N when the total thrust was 13N.

Characteristics of Pressure wave Pulsation at Carburetor on Small SI Engine (소형엔진 기화기 내의 흡기 맥동 특성)

  • Oh, J.W.;Choi, Y.H.;Kim, B.G.;Lee, D.G.;Kim, D.S.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.14 no.1
    • /
    • pp.34-38
    • /
    • 2009
  • This paper presents the pulsation of carburetor inlet and outlet pressure of a small SI gasoline engine. The engine used in this paper is a 23cc, single cylinder, diaphragm carburetor, two-stroke, air-cooled for brush cutter. The rpm and pressure wave pulsation at the inlet and the outlet of carburetor were measured and analysed for the understand of the internal air flow into the barrel on the diaphragm carburetor. These data should be used for the development of the duel fuel injection system for gasoline and LPG. The results showed that the carburetor inlet pressure variations were very steady, but the pressure variations at carburetor outlet were very sensitive to the pressure variation into the crank case and were to similar independently to the engine speed on partial opened throttle conditions. According to increasing engine speed, the pressure waves started to come out and be developed after closing the intake port of the engine at carburetor outlet. Reverse flow occurred on the WOT (wide open throttle) condition.

  • PDF

An Experimental Study on Flow Characteristics of Turbulent Pulsating Flow in a Curved Duct by Using LDV (LDV에 의한 곡관덕트에서 난류맥동유동의 유동특성에 관한 실험적 연구)

  • Lee, Hong-Gu;Son, Hyeon-Cheol;Lee, Haeng-Nam;Park, Gil-Mun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1561-1568
    • /
    • 2001
  • In the present study, flow characteristics of turbulent pulsating flow in a square-sectional 180$^{\circ}$curved duct were experimentally investigated. The experimental study for air flows in a curved duct are carried out to measure axial velocity profiles, wall shear stress distributions and entrance length in a square-sectional 180$^{\circ}$curved duct by using the Laser Doppler Velocimeter(LDV) system and the data acquisition. Velocity profiles are obtained using the Rotating Machinery Resolver(RMR)and PHASE software in case of turbulent pulsating flow. Finally, it was plotted by the ORIGIN software. The experiment was conducted in seven sections from the inlet (ø = 0$^{\circ}$) to the outlet (ø=l80$^{\circ}$) at 3 0$^{\circ}$intervals of the duct.