• 제목/요약/키워드: 맥동 종동력

검색결과 5건 처리시간 0.017초

종동력을 받는 원통셸의 동적 안정성에 관한 연구 (Dynamic Stability of Cylindrical Shells Subjected to Follower Forces)

  • 김현순;김지환
    • 소음진동
    • /
    • 제8권2호
    • /
    • pp.336-345
    • /
    • 1998
  • The dynamic instability of cylindrical shell with clamped-free boundary condition subjected to constant follower force or $P_0 + P_1cos {\Omega}_t$ type pulsating follower force is analyzed. The motion of shell is modeled using the shell theory considering rotary inertia and shear deformation, and analyzed with finite element method. In case of constant follower force, the changes of eigenvalues dependent on the magnitude of applied load are investigated and the critical loads are obtained. In case pulsating follower force, instability regions of exicitation frequency are obtained by modal transform with right and left modal matrix and by multiple scales method. The effects of thickness ratio and aspect ratio on the instability of shell are studied.

  • PDF

벨로스형 어큐뮬레이터의 압력 맥동 감쇠 특성 (Attenuation of Pressure Fluctuations in Oil Hydraulic Pipeline with Bellows Type Accumulator)

  • 이일영;정용길;이수종
    • 동력기계공학회지
    • /
    • 제5권4호
    • /
    • pp.31-37
    • /
    • 2001
  • Pressure propagation and attenuation characteristics in a hydraulic pipeline with a bellows type accumulator was investigated by theoretical analyses and experiments. In the first stage of the study, equations to evaluate the amount of oil volume charged into the bellows together with nitrogen gas were proposed. In the next stage, the authors suggested a mathematical model based on transfer matrix method to describe the dynamic characteristics of the pipe element with a metal bellows type accumulator. Through comparisons and considerations of the experimental and the numerical data shown in frequency domain, the validity of the mathematical model was confirmed.

  • PDF

맥동종동력이 작용하는 사각 자유경계판의 동적 안정성에 관한 연구 (On the Dynamic Stability of Rectangular Plates with Four Free Edges Subjected to Pulsating Follower Forces)

  • 추연선;김지환
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.127-134
    • /
    • 1997
  • The dynamic stability of classical plates and Mindlin plates subjected to pulsating follower forces is investigated in this paper. Using the finite element method, the induced equation is reduced to that of one with finite degrees of freedom. Then, the multiple scales method is applied to analyze the dynamic instability region. The effects of aspect ratio, Poisson ratio, rotary inertia and shear deformation on the dynamic stability of plates are studied in this paper.

  • PDF

강체운동 비선형 효과를 고려한 맥동 종동력을 받아 비행하는 보 구조물의 모델링 및 안정성 해석 (Modeling and Dynamic Stability Analysis of a Flying Beam Undertaking Pulsating Follower Forces Considering the Nonlinear Effect Due to Rigid Body Motion)

  • 현상학;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.510-515
    • /
    • 2000
  • Dynamic stability of a flying structure undertaking constant and pulsating axial forces is investigated in this paper. The equations of motion of the structure, which is idealized as a free-free beam, are derived by using the hybrid variable method and the assumed mode method. The structural system includes a directional control unit to obtain the directional stability. The analysis model presented in this paper considers the nonlinear effect due to rigid body motion of the beam. Dynamic stability of the system is influenced by the nonlinear effect. In order to examine the nonlinear effect, first the unstable regions of the linear system are obtained by using the method based upon Floquet's theory, and dynamic responses of the nonlinear system in the unstable region are obtained by using direct time integration method. Dynamic stability of the nonlinear system is determined by the obtained dynamic responses.

  • PDF

단기통 가솔린 기관의 배기단의 압력 예측 (Pressure Predictions in Exhaust Pipe of a Single Cylinder Gasoline Engine)

  • 최석천;이해종;김세현;고대권;정효민;정한식
    • 동력기계공학회지
    • /
    • 제8권1호
    • /
    • pp.24-29
    • /
    • 2004
  • In this study, a computer analysis has been developed for predicting the pipe pressure of the intake and exhaust manifold. To obtain the boundary conditions for a numerical analysis, one dimensional and non-steady gas dynamic calculation is performed by using the MOC(Method Of Characteristic). The main numerical parameters are the variation of the engine revolution to calculate the pulsating flow which the intake and exhaust valves arc working. The comparison of exhaust pressure in case of numerical results is quite matched with in case of experimental results. When engine revaluation is increased, the pressure amplitude showed a high value, but the pressure frequency was decreased.

  • PDF