• 제목/요약/키워드: 맥동난류유동

검색결과 21건 처리시간 0.022초

원관내 맥동난류유동에서의 열전달 수치해석 (Numerical Analysis of Heat Transfer in Pulsating Turbulent Pipe Flow)

  • 박희용;이관수;김창기
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1282-1289
    • /
    • 1990
  • 본 연구에서는 원관내에서 동적으로 완전히 발달한 난류맥동유동에서 관벽에 서 균일한 열유속이 주어지는 경우에 대하여 난류모델로서 K-.epsilon. 2방정식 모델을 적용 하여 수학적인 모델을 세운 후 이를 수치적으로 해석하였다. 그 결과 시간평균 레이 놀즈수가 10000인 경우에 대하여 Strouhal수가 0.0005에서 0.05 그리고 맥동속도진폭 이 0.8이하인 맥동류에 대한 열전달 특성을 제시하였다.

봉다발을 지나는 저 Prandtl 수 유체 유동에서의 난류 혼합율 예측

  • 김신;조경호;이윤준
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.520-525
    • /
    • 1998
  • 난류혼합율에 대한 예측은 원자로의 노심 열수력 설계에 있어 매우 중요한 일이다. 봉다발 구조에서 난류혼합의 주요 원인으로 지목되고 있는 유동액동(flow pulsation) 현상에 대한 척도평가(scale analysis)틀 통해 봉다발 유동장을 흐르는 저 Prandtl 수 유채에 대판 난류혼합율 평가식을 유도하였다. 난류혼합에 기여하는 인자가 분자운동, 등방성 난류운동(유동맥동 효과률 배제한 난류운동), 그리고 유동맥동의 세 부분으로 구성되어 있다고 가정하고, 각각에 대한 길이 및 속도척도를 평가하여 난류혼합율을 유도하였다. 평가식에는 P/D, Re수 P${\gamma}$ 수 등의 인자가 고려되어 있어 다양한 기하학적, 수력학적 조건과 유체의 물리적 특성이 반영되어 있다. 유도원 난류혼합율 평가식을 실험 상관식과 비교하였으며, 비교 결과 만족스러운 것으로 나타났다.

  • PDF

대향분출류가 있는 맥동연소기의 비정상 점화현상 (Unsteady Ignition in the Pulse Combustor with Counter Jet Flows)

  • 이창진
    • 한국추진공학회지
    • /
    • 제1권1호
    • /
    • pp.64-72
    • /
    • 1997
  • 맥동연소의 비정상 점화현상을 연구하기 위하여 이론적인 해석을 수행하였다. 맥동연소에서는 연소기의 양쪽에서 유입되는 고온의 연소가스와 미연 혼합가스가 연소실 내부에서 충돌하여 정체면을 형성하며 유동변형율이 임계 값 이하가 될 때까지 점화가 억제된다. 본 연구에서는 유동의 유동변형율의 변화에 대한 점화현상의 반응을 연구하기 위하여 활성화 에너지 점근법과 비가역 1단계 화학반응을 이용하였다. 또한 유동에 의한 유동변형율은 두 가지 요인에 의하여 발생하는 것으로 모델링 하였는데, 비정상 유동에 의한 평균 유동변형율과 난류에 의하여 유도되는 유동변형율이 그것이다. 해석 결과에 의하면, 맥동연소에서는 잘 정의된 점화지연이 존재하며, 점화 또는 소염의 발생 여부는 Damkohler 수에 의하여 거의 결정된다.

  • PDF

곡관덕트에서 난류맥동유동의 축방향 속도분포와 2차유동속도분포 (Axial Direction Velocity and Secondary Flow Distributions of Turbulent Pulsating Flow in a Curved Duct)

  • 손현철;이홍구;이행남;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권6호
    • /
    • pp.15-23
    • /
    • 2000
  • In the present study, flow characteristics of turbulent pulsating flow in the square-sectional $180^{\circ}$curved duct are investigated experimentally. In order to measure axial direction velocity and secondary flow distributions, experimental studies for air flow are conducted in the square-sectional $180^{\circ}$curved duct by using the LDV system with the data acquisition and the processing system of the Rotating Machinery Resolver (RMR) and the PHASE software. The experiment is conducted on seven sections form the inlet($\phi=0^{\circ}$) to the outlet($\phi=180^{\circ}$) at $30^{\circ}$intervals of the duct. The results obtained from the experimentation are summarized as follows : In the axial direction velocity distributions of turbulent pulsating flow, when the ratio of velocity amplitude (A1) is less than one, there is hardly any velocity change in the section except near the wall and in axial velocity distribution along the phase. The secondary flow of turbulent pulsating flow has a positive value at the bend angle of $150^{\circ}$regardless of the ratio of velocity amplitude. The dimensionless value of secondary flow becomes gradually weak and approaches zero in the region of bend angle $180^{\circ}$without regard to the ratio of velocity amplitude.

  • PDF

LDV에 의한 곡관덕트에서 난류맥동유동의 유동특성에 관한 실험적 연구 (An Experimental Study on Flow Characteristics of Turbulent Pulsating Flow in a Curved Duct by Using LDV)

  • 이홍구;손현철;이행남;박길문
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1561-1568
    • /
    • 2001
  • In the present study, flow characteristics of turbulent pulsating flow in a square-sectional 180$^{\circ}$curved duct were experimentally investigated. The experimental study for air flows in a curved duct are carried out to measure axial velocity profiles, wall shear stress distributions and entrance length in a square-sectional 180$^{\circ}$curved duct by using the Laser Doppler Velocimeter(LDV) system and the data acquisition. Velocity profiles are obtained using the Rotating Machinery Resolver(RMR)and PHASE software in case of turbulent pulsating flow. Finally, it was plotted by the ORIGIN software. The experiment was conducted in seven sections from the inlet (ø = 0$^{\circ}$) to the outlet (ø=l80$^{\circ}$) at 3 0$^{\circ}$intervals of the duct.

PIV를 이용한 트랜섬 선미 형상에 따른 후류 점성유동 특성에 관한 연구

  • 구윤경;이창우;손창배;김옥석;이경우
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2010년도 추계학술대회
    • /
    • pp.46-47
    • /
    • 2010
  • 추진기와 타가 놓여있는 선미부에서의 난류 유동에 의한 저항을 증가시키는 요인이 집중되어 있다. 트랜섬 선미를 가지고 있는 선박의 경우 선미선형에 의한 저항의 형태가 달라진다. $Re=2.8{\times}10^5$의 균일흐름에서, 선저와 트랜섬이 이루는 각도를 각각 $45^{\circ}$, $90^{\circ}$, $135^{\circ}$로 변형하여 선미선형을 선정하였으며, 자유 수면에서 모델의 하부까지의 깊이는 동일하게 적용하였다. 선저가 끝단에서 트랜섬 선미형상에 의해 급격한 각도를 이루는 지점에서 상하로 맥동하는 유동특성이 나타나며, 각도가 증가 할수록 와의 형태가 작아져 난류의 발생이 감소하였다.

  • PDF

壓縮點火機關의 燃燒室 特性과 狀態變化(I)

  • 김광수
    • 기계저널
    • /
    • 제23권6호
    • /
    • pp.427-433
    • /
    • 1983
  • 내연기관의 성능은 실린더에서 연료의 화학에너지가 열에너지로 얼마만큼 빠르고 완전하게 변화하느냐에 좌우된다. 이를 위해서는 실린더 내에서 뜨거운 압축공기와 연료의 혼합 및 증기화가 요구된다. 엔진의 출력은 매 사이클당 흡입.압축할 수 있는 공기량에 좌우되므로 연소의 해석을 위해서는 실린더 내의 공기유동, 연료의 분무 및 연소과정을 이해 해야한다. 배기와 엔진효율의 요구성때문에 희박 혼합기 또는 EGR (exhaust gas recirculation)이 필요하게 된다. 그러나 희석이 크면 낮은 연소온도, 낮은 층류흐름속도와 화염전면의 낮은 난류강도 때문에 연소기간이 증대하게 된다. 실제로 희박의 증가는 실화 또는 긴 연소 지연기간, 사이클 마다의 연소맥동현상, HC배기의 증가등을 초래하게 된다. 이러한 저온연소의 단점들은 연소상태를 안정시키고 연소량을 증대시키는 공기의 유동을 이용해서 해결 될 수 있다. 최근에는 선회류와 난류의 강도를 증가시켜서 빠른연소(fast burning)를 이루고 있다. 선회류와 난류의 강도를 증대시키는 가장 중요한 2가지 방법은 흡입포트(port), 매니홀드(manifold)설계이다.

  • PDF

곡관덕트에서 난류맥동유동의 축방향 속도분포와 2차유동분포에 관한연구 (A Study on the Axial Velocity and Secondary Flow Distributions of Turbulent Pulsating Flow in a Curved Duct)

  • 손현철
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.127-133
    • /
    • 2000
  • In the present study flow characteristics of turbulent pulsating flow in a square-sectional 180。 curved duct are investigated experimentally. in order to measure axial velocity and secondary flow distributions experimental studies for air flow are conducted in a square-sectional $180^{\circ}$ curved duct by using the LDV system with the data acquisition and the processing system of the Rotating Machinery Resolver (RMR) and the PHASE software. The experiment is conducted on seven sections form the inlet(${\phi}=180^{\circ}$) at $30^{\circ}$ intervals of the duct. The results obtained from the experimentation are summarized as follows : In the axial velocity distributions of turbulent pulsating flow when the ratio of velocity amplitude(A1) is less than one there is hardly any velocity change in the section except near the wall and any change in axial velocity distribution along the phase. The secondary flow of turbulent pulsating flow has a positive value at the vend angle of $150^{\circ}$ without regard to the ratio of velocity amplitude. The dimensionless value of secondary flow becomes gradually weak and approaches zero in the region of bend angle $180^{\circ}$ without regard to the ratio of velocity amplitude.

  • PDF

정4각단면덕트의 입구영역에서 난류맥동유동의 압력분포, 전단응력분포와 관마찰계수에 관한 연구(Ⅰ), - 실험해석- (A Study on Pressure Distribution, Wall Shear Stress and Friction Factor of Developing Turbulent Pulsating Flows in a Square Duct(Ⅰ), -Experimental Analysis-)

  • 박길문;조병기;고영하;봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권5호
    • /
    • pp.58-67
    • /
    • 1996
  • In the present study, the pressure distribution, wall shear stress distribution and friction factor of developing turbulent pulsating flows are investigated theoretically and experimentally in the entrance region of a square duct. The pressure distribution for turbulent pulsating flows are in good agreement with the theoretical values. The time-averaged pressure gradients of the turbulent pulsating flows show the same tendency as those of turbulent steady flows as the time-averged Reynolds number $(Re_{ta})$ increase. Mean shear stresses in the turbulent pulsating flow increase more in the inlet flow region than in the fully developed flow region and approach to almost constant value in the fully developed flow region. In the turbulent pulsating flow, the friction factor of the quasi-steady state flow $({\lambda}_{q, tu})$ follow friction factor's law in turbulent steady flow. The entrance length of the turbulent pulsating flow is not influenced by the time-averaged Reynolds number $(Re_{ta})$ and it is about 40 times as large as the hydraulic diameter.

  • PDF

복합 부수로의 비정상 유동이 유발하는 난류열전달 증진에 대한 LES 해석 (Large Eddy Simulation of Heat Transfer Performance Enhancement due to Unsteady Flow in Compound Channels)

  • 홍성호;신종근;최영돈
    • 설비공학논문집
    • /
    • 제23권2호
    • /
    • pp.132-138
    • /
    • 2011
  • In the present article, we investigate numerically turbulent flow of air through compound rectangular channels. Large eddy simulation(LES) is employed for unsteady turbulence modeling. LES gives better predictions for the axial mean velocity distribution than those of other turbulent models. Strong large-scale quasi-periodic flow oscillations are observed in most of the geometries investigated. Such large-scale flow oscillations in compound rectangular channels are similar to the quasi-periodic flow pulsation through the gaps between fuel rod bundle in nuclear reactor. It exists in any longitudinal connecting gap between two flow channels. The frequency of this flow oscillation is determined by the geometry of the gap. The large scale cross motions through the rectangular compound channels induce significant heat transfer enhancement of the compound channel flow.